Unknown

Dataset Information

0

Quantum-Chemical Study of the FeNCN Conversion-Reaction Mechanism in Lithium- and Sodium-Ion Batteries.


ABSTRACT: We report a computational study on 3d transition-metal (Cr, Mn, Fe, and Co) carbodiimides in Li- and Na-ion batteries. The obtained cell voltages semi-quantitatively fit the experiments, highlighting the practicality of PBE+U as an approach for modeling the conversion-reaction mechanism of the FeNCN archetype with lithium and sodium. Also, the calculated voltage profiles agree satisfactorily with experiment both for full (Li-ion battery) and partial (Na-ion battery) discharge, even though experimental atomistic knowledge is missing up to now. Moreover, we rationalize the structural preference of intermediate ternaries and their characteristic lowering in the voltage profile using chemical-bonding and Mulliken-charge analysis. The formation of such ternary intermediates for the lithiation of FeNCN and the contribution of at least one ternary intermediate is also confirmed experimentally. This theoretical approach, aided by experimental findings, supports the atomistic exploration of electrode materials governed by conversion reactions.

SUBMITTER: Chen K 

PROVIDER: S-EPMC7065120 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Quantum-Chemical Study of the FeNCN Conversion-Reaction Mechanism in Lithium- and Sodium-Ion Batteries.

Chen Kaixuan K   Fehse Marcus M   Laurita Angelica A   Arayamparambil Jeethu Jiju JJ   Sougrati Moulay Tahar MT   Stievano Lorenzo L   Dronskowski Richard R  

Angewandte Chemie (International ed. in English) 20200122 9


We report a computational study on 3d transition-metal (Cr, Mn, Fe, and Co) carbodiimides in Li- and Na-ion batteries. The obtained cell voltages semi-quantitatively fit the experiments, highlighting the practicality of PBE+U as an approach for modeling the conversion-reaction mechanism of the FeNCN archetype with lithium and sodium. Also, the calculated voltage profiles agree satisfactorily with experiment both for full (Li-ion battery) and partial (Na-ion battery) discharge, even though experi  ...[more]

Similar Datasets

| S-EPMC6941190 | biostudies-literature
| S-EPMC6527546 | biostudies-literature
| S-EPMC7469244 | biostudies-literature
| S-EPMC9950943 | biostudies-literature
| S-EPMC3156205 | biostudies-literature
| S-EPMC7250880 | biostudies-literature
| S-EPMC7096543 | biostudies-literature
| S-EPMC6028452 | biostudies-literature
| S-EPMC8342431 | biostudies-literature
| S-EPMC10251523 | biostudies-literature