Ontology highlight
ABSTRACT:
SUBMITTER: Bogowicz M
PROVIDER: S-EPMC7066122 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
Bogowicz Marta M Jochems Arthur A Deist Timo M TM Tanadini-Lang Stephanie S Huang Shao Hui SH Chan Biu B Waldron John N JN Bratman Scott S O'Sullivan Brian B Riesterer Oliver O Studer Gabriela G Unkelbach Jan J Barakat Samir S Brakenhoff Ruud H RH Nauta Irene I Gazzani Silvia E SE Calareso Giuseppina G Scheckenbach Kathrin K Hoebers Frank F Wesseling Frederik W R FWR Keek Simon S Sanduleanu Sebastian S Leijenaar Ralph T H RTH Vergeer Marije R MR Leemans C René CR Terhaard Chris H J CHJ van den Brekel Michiel W M MWM Hamming-Vrieze Olga O van der Heijden Martijn A MA Elhalawani Hesham M HM Fuller Clifton D CD Guckenberger Matthias M Lambin Philippe P Lambin Philippe P
Scientific reports 20200311 1
A major challenge in radiomics is assembling data from multiple centers. Sharing data between hospitals is restricted by legal and ethical regulations. Distributed learning is a technique, enabling training models on multicenter data without data leaving the hospitals ("privacy-preserving" distributed learning). This study tested feasibility of distributed learning of radiomics data for prediction of two year overall survival and HPV status in head and neck cancer (HNC) patients. Pretreatment CT ...[more]