Unknown

Dataset Information

0

Laser cleavable probes for in situ multiplexed glycan detection by single cell mass spectrometry.


ABSTRACT: Glycans binding on the cell surface through glycosylation play a key role in controlling various cellular processes, and glycan analysis at a single-cell level is necessary to study cellular heterogeneity and diagnose diseases in the early stage. Herein, we synthesized a series of laser cleavable probes, which could sensitively detect glycans on single cells and tissues by laser desorption ionization mass spectrometry (LDI-MS). This multiplexed and quantitative glycan detection was applied to evaluate the alterations of four types of glycans on breast cancer cells and drug-resistant cancer cells at a single-cell level, indicating that drug resistance may be related to the upregulation of glycan with a β-d-galactoside (Galβ) group and Neu5Aca2-6Gal(NAc)-R. Moreover, the glycan spatial distribution in cancerous and paracancerous human tissues was also demonstrated by MS imaging, showing that glycans are overexpressed in cancerous tissues. Therefore, this single-cell MS approach exhibits promise for application in studying glycan functions which are essential for clinical biomarker discovery and diagnosis of related diseases.

SUBMITTER: Han J 

PROVIDER: S-EPMC7066667 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8146070 | biostudies-literature
| S-EPMC6385553 | biostudies-literature
| S-EPMC3328658 | biostudies-literature
| S-EPMC10326916 | biostudies-literature
| S-EPMC3801209 | biostudies-literature
| S-EPMC6424509 | biostudies-literature
| S-EPMC6021752 | biostudies-literature
| S-EPMC5914540 | biostudies-literature
| S-EPMC2637404 | biostudies-literature
| S-EPMC7226835 | biostudies-literature