Unknown

Dataset Information

0

Convergence and machine learning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations.


ABSTRACT: In this work, we developed an automatic convergence procedure for k-points and plane wave cut-off in density functional (DFT) calculations and applied it to more than 30000 materials. The computational framework for automatic convergence can take a user-defined input as a convergence criterion. For k-points, we converged energy per cell (EPC) to 0.001 eV/cell tolerance and compared the results with those obtained using an energy per atom (EPA) convergence criteria of 0.001 eV/atom. From the analysis of our results, we could relate k-point density and plane wave cut-off to material parameters such as density, the slope of bands, number of band-crossings, the maximum plane-wave cut-off used in pseudopotential generation, crystal systems, and the number of unique species in materials. We also identified some material species that would require more careful convergence than others. Moreover, we statistically investigated the dependence of k-points and cutoff on exchange-correlation functionals. We utilized all this data to train machine learning models to predict the k-point line density and plane-wave cut-off for generalized materials. This would provide users with a good starting point towards converged DFT calculations. The code used, and the converged data are available on the following websites: https://jarvis.nist.gov/, and https://github.com/usnistgov/jarvis.

SUBMITTER: Choudhary K 

PROVIDER: S-EPMC7066999 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Convergence and machine learning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations.

Choudhary Kamal K   Tavazza Francesca F  

Computational materials science 20190101


In this work, we developed an automatic convergence procedure for k-points and plane wave cut-off in density functional (DFT) calculations and applied it to more than 30000 materials. The computational framework for automatic convergence can take a user-defined input as a convergence criterion. For k-points, we converged energy per cell (EPC) to 0.001 eV/cell tolerance and compared the results with those obtained using an energy per atom (EPA) convergence criteria of 0.001 eV/atom. From the anal  ...[more]

Similar Datasets

| S-EPMC9979607 | biostudies-literature
| S-EPMC10562675 | biostudies-literature
| S-EPMC6962549 | biostudies-literature
| S-EPMC5644373 | biostudies-literature
| S-EPMC4602336 | biostudies-literature
| S-EPMC3198431 | biostudies-literature
| S-EPMC5497994 | biostudies-literature
| S-EPMC6385026 | biostudies-literature
| S-EPMC8667032 | biostudies-literature
| S-EPMC7317772 | biostudies-literature