Project description:Opinion evolution and judgment revision are mediated through social influence. Based on a large crowdsourced in vitro experiment (n = 861), it is shown how a consensus model can be used to predict opinion evolution in online collective behaviour. It is the first time the predictive power of a quantitative model of opinion dynamics is tested against a real dataset. Unlike previous research on the topic, the model was validated on data which did not serve to calibrate it. This avoids to favor more complex models over more simple ones and prevents overfitting. The model is parametrized by the influenceability of each individual, a factor representing to what extent individuals incorporate external judgments. The prediction accuracy depends on prior knowledge on the participants' past behaviour. Several situations reflecting data availability are compared. When the data is scarce, the data from previous participants is used to predict how a new participant will behave. Judgment revision includes unpredictable variations which limit the potential for prediction. A first measure of unpredictability is proposed. The measure is based on a specific control experiment. More than two thirds of the prediction errors are found to occur due to unpredictability of the human judgment revision process rather than to model imperfection.
Project description:Social influence is the process by which individuals adapt their opinion, revise their beliefs, or change their behavior as a result of social interactions with other people. In our strongly interconnected society, social influence plays a prominent role in many self-organized phenomena such as herding in cultural markets, the spread of ideas and innovations, and the amplification of fears during epidemics. Yet, the mechanisms of opinion formation remain poorly understood, and existing physics-based models lack systematic empirical validation. Here, we report two controlled experiments showing how participants answering factual questions revise their initial judgments after being exposed to the opinion and confidence level of others. Based on the observation of 59 experimental subjects exposed to peer-opinion for 15 different items, we draw an influence map that describes the strength of peer influence during interactions. A simple process model derived from our observations demonstrates how opinions in a group of interacting people can converge or split over repeated interactions. In particular, we identify two major attractors of opinion: (i) the expert effect, induced by the presence of a highly confident individual in the group, and (ii) the majority effect, caused by the presence of a critical mass of laypeople sharing similar opinions. Additional simulations reveal the existence of a tipping point at which one attractor will dominate over the other, driving collective opinion in a given direction. These findings have implications for understanding the mechanisms of public opinion formation and managing conflicting situations in which self-confident and better informed minorities challenge the views of a large uninformed majority.
Project description:Collective behaviour is of fundamental importance in the life sciences, where it appears at levels of biological complexity from single cells to superorganisms, in demography and the social sciences, where it describes the behaviour of populations, and in the physical and engineering sciences, where it describes physical phenomena and can be used to design distributed systems. Reasoning about collective behaviour is inherently difficult, as the non-linear interactions between individuals give rise to complex emergent dynamics. Mathematical techniques have been developed to analyse systematically collective behaviour in such systems, yet these frequently require extensive formal training and technical ability to apply. Even for those with the requisite training and ability, analysis using these techniques can be laborious, time-consuming and error-prone. Together these difficulties raise a barrier-to-entry for practitioners wishing to analyse models of collective behaviour. However, rigorous modelling of collective behaviour is required to make progress in understanding and applying it. Here we present an accessible tool which aims to automate the process of modelling and analysing collective behaviour, as far as possible. We focus our attention on the general class of systems described by reaction kinetics, involving interactions between components that change state as a result, as these are easily understood and extracted from data by natural, physical and social scientists, and correspond to algorithms for component-level controllers in engineering applications. By providing simple automated access to advanced mathematical techniques from statistical physics, nonlinear dynamical systems analysis, and computational simulation, we hope to advance standards in modelling collective behaviour. At the same time, by providing expert users with access to the results of automated analyses, sophisticated investigations that could take significant effort are substantially facilitated. Our tool can be accessed online without installing software, uses a simple programmatic interface, and provides interactive graphical plots for users to develop understanding of their models.
Project description:BACKGROUND: E-communities, social groups interacting online, have recently become an object of interdisciplinary research. As with face-to-face meetings, Internet exchanges may not only include factual information but also emotional information--how participants feel about the subject discussed or other group members. Emotions in turn are known to be important in affecting interaction partners in offline communication in many ways. Could emotions in Internet exchanges affect others and systematically influence quantitative and qualitative aspects of the trajectory of e-communities? The development of automatic sentiment analysis has made large scale emotion detection and analysis possible using text messages collected from the web. However, it is not clear if emotions in e-communities primarily derive from individual group members' personalities or if they result from intra-group interactions, and whether they influence group activities. METHODOLOGY/PRINCIPAL FINDINGS: Here, for the first time, we show the collective character of affective phenomena on a large scale as observed in four million posts downloaded from Blogs, Digg and BBC forums. To test whether the emotions of a community member may influence the emotions of others, posts were grouped into clusters of messages with similar emotional valences. The frequency of long clusters was much higher than it would be if emotions occurred at random. Distributions for cluster lengths can be explained by preferential processes because conditional probabilities for consecutive messages grow as a power law with cluster length. For BBC forum threads, average discussion lengths were higher for larger values of absolute average emotional valence in the first ten comments and the average amount of emotion in messages fell during discussions. CONCLUSIONS/SIGNIFICANCE: Overall, our results prove that collective emotional states can be created and modulated via Internet communication and that emotional expressiveness is the fuel that sustains some e-communities.
Project description:The intrinsic temporality of learning demands the adoption of methodologies capable of exploiting time-series information. In this study we leverage the sequence data framework and show how data-driven analysis of temporal sequences of task completion in online courses can be used to characterise personal and group learners' behaviors, and to identify critical tasks and course sessions in a given course design. We also introduce a recently developed probabilistic Bayesian model to learn sequential behaviours of students and predict student performance. The application of our data-driven sequence-based analyses to data from learners undertaking an on-line Business Management course reveals distinct behaviors within the cohort of learners, identifying learners or groups of learners that deviate from the nominal order expected in the course. Using course grades a posteriori, we explore differences in behavior between high and low performing learners. We find that high performing learners follow the progression between weekly sessions more regularly than low performing learners, yet within each weekly session high performing learners are less tied to the nominal task order. We then model the sequences of high and low performance students using the probablistic Bayesian model and show that we can learn engagement behaviors associated with performance. We also show that the data sequence framework can be used for task-centric analysis; we identify critical junctures and differences among types of tasks within the course design. We find that non-rote learning tasks, such as interactive tasks or discussion posts, are correlated with higher performance. We discuss the application of such analytical techniques as an aid to course design, intervention, and student supervision.
Project description:Collective behaviour is a fascinating and easily observable phenomenon, attractive to a wide range of researchers. In biology, computational models have been extensively used to investigate various properties of collective behaviour, such as: transfer of information across the group, benefits of grouping (defence against predation, foraging), group decision-making process, and group behaviour types. The question 'why,' however remains largely unanswered. Here the interest goes into which pressures led to the evolution of such behaviour, and evolutionary computational models have already been used to test various biological hypotheses. Most of these models use genetic algorithms to tune the parameters of previously presented non-evolutionary models, but very few attempt to evolve collective behaviour from scratch. Of these last, the successful attempts display clumping or swarming behaviour. Empirical evidence suggests that in fish schools there exist three classes of behaviour; swarming, milling and polarized. In this paper we present a novel, artificial life-like evolutionary model, where individual agents are governed by linguistic fuzzy rule-based systems, which is capable of evolving all three classes of behaviour.
Project description:We posit a new geometric perspective to define, detect, and classify inherent patterns of collective behaviour across a variety of animal species. We show that machine learning techniques, and specifically the isometric mapping algorithm, allow the identification and interpretation of different types of collective behaviour in five social animal species. These results offer a first glimpse at the transformative potential of machine learning for ethology, similar to its impact on robotics, where it enabled robots to recognize objects and navigate the environment.
Project description:Collective behaviour is a widespread phenomenon in biology, cutting through a huge span of scales, from cell colonies up to bird flocks and fish schools. The most prominent trait of collective behaviour is the emergence of global order: individuals synchronize their states, giving the stunning impression that the group behaves as one. In many biological systems, though, it is unclear whether global order is present. A paradigmatic case is that of insect swarms, whose erratic movements seem to suggest that group formation is a mere epiphenomenon of the independent interaction of each individual with an external landmark. In these cases, whether or not the group behaves truly collectively is debated. Here, we experimentally study swarms of midges in the field and measure how much the change of direction of one midge affects that of other individuals. We discover that, despite the lack of collective order, swarms display very strong correlations, totally incompatible with models of non-interacting particles. We find that correlation increases sharply with the swarm's density, indicating that the interaction between midges is based on a metric perception mechanism. By means of numerical simulations we demonstrate that such growing correlation is typical of a system close to an ordering transition. Our findings suggest that correlation, rather than order, is the true hallmark of collective behaviour in biological systems.
Project description:Collective behaviour in living systems is observed across many scales, from bacteria to insects, to fish shoals. Zebrafish have emerged as a model system amenable to laboratory study. Here we report a three-dimensional study of the collective dynamics of fifty zebrafish. We observed the emergence of collective behaviour changing between ordered to randomised, upon adaptation to new environmental conditions. We quantify the spatial and temporal correlation functions of the fish and identify two length scales, the persistence length and the nearest neighbour distance, that capture the essence of the behavioural changes. The ratio of the two length scales correlates robustly with the polarisation of collective motion that we explain with a reductionist model of self-propelled particles with alignment interactions.
Project description:Modern technology has drastically changed the way we interact and consume information. For example, online social platforms allow for seamless communication exchanges at an unprecedented scale. However, we are still bounded by cognitive and temporal constraints. Our attention is limited and extremely valuable. Algorithmic personalisation has become a standard approach to tackle the information overload problem. As result, the exposure to our friends' opinions and our perception about important issues might be distorted. However, the effects of algorithmic gatekeeping on our hyper-connected society are poorly understood. Here, we devise an opinion dynamics model where individuals are connected through a social network and adopt opinions as function of the view points they are exposed to. We apply various filtering algorithms that select the opinions shown to each user (i) at random (ii) considering time ordering or (iii) its current opinion. Furthermore, we investigate the interplay between such mechanisms and crucial features of real networks. We found that algorithmic filtering might influence opinions' share and distributions, especially in case information is biased towards the current opinion of each user. These effects are reinforced in networks featuring topological and spatial correlations where echo chambers and polarisation emerge. Conversely, heterogeneity in connectivity patterns reduces such tendency. We consider also a scenario where one opinion, through nudging, is centrally pushed to all users. Interestingly, even minimal nudging is able to change the status quo moving it towards the desired view point. Our findings suggest that simple filtering algorithms might be powerful tools to regulate opinion dynamics taking place on social networks.