Unknown

Dataset Information

0

NIK links inflammation to hepatic steatosis by suppressing PPAR? in alcoholic liver disease.


ABSTRACT: Background: Inflammation and steatosis are the main pathological features of alcoholic liver disease (ALD), in which, inflammation is one of the critical drivers for the initiation and development of alcoholic steatosis. NIK, an inflammatory pathway component activated by inflammatory cytokines, was suspected to link inflammation to hepatic steatosis during ALD. However, the underlying pathogenesis is not well-elucidated. Methods: Alcoholic steatosis was induced in mice by chronic-plus-binge ethanol feeding. Both the loss- and gain-of-function experiments by the hepatocyte-specific deletion, pharmacological inhibition and adenoviral transfection of NIK were utilized to elucidate the role of NIK in alcoholic steatosis. Rate of fatty acid oxidation was assessed in vivo and in vitro. PPAR? agonists or antagonists of MEK1/2 and ERK1/2 were used to identify the NIK-induced regulation of PPAR?, MEK1/2, and ERK1/2. The potential interactions between NIK, MEK1/2, ERK1/2 and PPAR? and the phosphorylation of PPAR? were clarified by immunoprecipitation, immunoblotting and far-western blotting analysis. Results: Hepatocyte-specific deletion of NIK protected mice from alcoholic steatosis by sustaining hepatic fatty acid oxidation. Moreover, overexpression of NIK contributed to hepatic lipid accumulation with disrupted fatty acid oxidation. The pathological effect of NIK in ALD may be attributed to the suppression of PPAR?, the main controller of fatty acid oxidation in the liver, because PPAR? agonists reversed NIK-mediated hepatic steatosis and malfunction of fatty acid oxidation. Mechanistically, NIK recruited MEK1/2 and ERK1/2 to form a complex that catalyzed the inhibitory phosphorylation of PPAR?. Importantly, pharmacological intervention against NIK significantly attenuated alcoholic steatosis in ethanol-fed mice. Conclusions: NIK targeting PPAR? via MEK1/2 and ERK1/2 disrupts hepatic fatty acid oxidation and exhibits high value in ALD therapy.

SUBMITTER: Li Y 

PROVIDER: S-EPMC7069072 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

NIK links inflammation to hepatic steatosis by suppressing PPARα in alcoholic liver disease.

Li Yaru Y   Chen Mingming M   Zhou Yu Y   Tang Chuanfeng C   Zhang Wen W   Zhong Ying Y   Chen Yadong Y   Zhou Hong H   Sheng Liang L  

Theranostics 20200218 8


<b>Background:</b> Inflammation and steatosis are the main pathological features of alcoholic liver disease (ALD), in which, inflammation is one of the critical drivers for the initiation and development of alcoholic steatosis. NIK, an inflammatory pathway component activated by inflammatory cytokines, was suspected to link inflammation to hepatic steatosis during ALD. However, the underlying pathogenesis is not well-elucidated. <b>Methods:</b> Alcoholic steatosis was induced in mice by chronic-  ...[more]

Similar Datasets

| S-EPMC7260323 | biostudies-literature
| S-EPMC4941543 | biostudies-literature
| S-EPMC7035350 | biostudies-literature
| S-EPMC7146245 | biostudies-literature
| S-EPMC5985050 | biostudies-literature
| S-EPMC4397012 | biostudies-literature
| S-EPMC4719063 | biostudies-literature
| S-EPMC8964007 | biostudies-literature
| S-EPMC8272374 | biostudies-literature
| S-EPMC6483099 | biostudies-literature