Long Non-coding RNA BLACAT1 Induces Tamoxifen Resistance in Human Breast Cancer by Regulating miR-503/Bcl-2 Axis.
Ontology highlight
ABSTRACT: Introduction:At present, drug resistance remains a major obstacle for breast cancer (BCa) patients who receive tamoxifen (TAM) chemotherapy. In this study, we aimed to investigate the functional role of long non-coding RNA BLACAT1 in the acquisition of TAM resistance in BCa. Methods:TAM-resistant BCa cells were derived by exposure to 1 ?M of TAM for 6 months. The expression levels of BLACAT1 and miR-503 were detected by RT-qPCR analysis. Chemosensitivity of BCa cells to TAM was measured by MTT assay. Apoptosis of BCa cells was detected by flow cytometric analysis, and the expression levels of apoptosis-related proteins were detected by Western blot analysis. The direct binding relation between BLACAT1 and miR-503 was predicted by bioinformatics analysis and verified by dual-luciferase reporter assay. Results:Our findings showed that BLACAT1 was significantly upregulated in TAM-resistant BCa cells (MCF-7/TR and T47D/TR), and BLACAT1 knockdown markedly reduced the TAM resistance in these cells. Importantly, we observed that BLACAT1 might function as a competing endogenous RNA of miR-503 in MCF-7/TR and T47D/TR cells, thereby increasing the expression of oncogenic Bcl-2 protein. Rescue experiments showed that miR-503 inhibition partly blocked the inhibitory effect of BLACAT1 knockdown on TAM resistance of MCF-7/TR and T47D/TR cells. Conclusion:To conclude, this study revealed that overexpressed BLACAT1 induces TAM resistance in human BCa partly by regulating miR-503/Bcl-2 axis, potentially benefiting BCa treatment in the future.
SUBMITTER: Qu R
PROVIDER: S-EPMC7071872 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA