Engineering Herbicide-Tolerance Rice Expressing an Acetohydroxyacid Synthase with a Single Amino Acid Deletion.
Ontology highlight
ABSTRACT: The acetohydroxyacid synthase (AHAS) is an essential enzyme involved in branched amino acids. Several herbicides wither weeds via inhibiting AHAS activity, and the AHAS mutants show tolerance to these herbicides. However, most AHAS mutations are residue substitutions but not residue deletion. Here, residue deletion was used to engineering the AHAS gene and herbicide-tolerant rice. Molecular docking analysis predicted that the W548 of the AHAS was a residue deletion to generate herbicide tolerance. The AHAS-?W548 protein was generated in vitro to remove the W548 residue. Interestingly, the deletion led to the tetramer dissociation of the AHAS, while this dissociation did not reduce the activity of the AHAS. Moreover, the W548 deletion contributed to multi-family herbicides tolerance. Specially, it conferred more tolerance to sulfometuron-methyl and bispyribac-sodium than the W548L substitution. Further analysis revealed that AHAS-?W548 had the best performance on the sulfometuron-methyl tolerance compared to the wild-type control. Over-expression of the AHAS-?W548 gene into rice led to the tolerance of multiple herbicides in the transgenic line. The T-DNA insertion and the herbicide treatment did not affect the agronomic traits and yields, while more branched-chain amino acids were detected in transgenic rice seeds. Residue deletion of W548 in the AHAS could be a useful strategy for engineering herbicide tolerant rice. The increase of branched-chain amino acids might improve the umami tastes of the rice.
SUBMITTER: Fang J
PROVIDER: S-EPMC7072996 | biostudies-literature | 2020 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA