Unknown

Dataset Information

0

Adsorption and Diffusion of Hydrogen in Carbon Honeycomb.


ABSTRACT: Carbon honeycomb has a nanoporous structure with good mechanical properties including strength. Here we investigate the adsorption and diffusion of hydrogen in carbon honeycomb via grand canonical Monte Carlo simulations and molecular dynamics simulations including strength. Based on the adsorption simulations, molecular dynamics simulations are employed to study the effect of pressure and temperature for the adsorption and diffusion of hydrogen. To study the effect of pressure, we select the 0.1, 1, 5, 10, 15, and 20 bars. Meanwhile, we have studied the hydrogen storage capacities of the carbon honeycomb at 77 K, 153 K, 193 K, 253 K and 298 K. A high hydrogen adsorption of 4.36 wt.% is achieved at 77 K and 20 bars. The excellent mechanical properties of carbon honeycomb and its unique three-dimensional honeycomb microporous structure provide a strong guarantee for its application in practical engineering fields.

SUBMITTER: Qin Q 

PROVIDER: S-EPMC7075187 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Adsorption and Diffusion of Hydrogen in Carbon Honeycomb.

Qin Qin Q   Sun Tingwei T   Wang Hanxiao H   Brault Pascal P   An Haojie H   Xie Lu L   Peng Qing Q  

Nanomaterials (Basel, Switzerland) 20200218 2


Carbon honeycomb has a nanoporous structure with good mechanical properties including strength. Here we investigate the adsorption and diffusion of hydrogen in carbon honeycomb via grand canonical Monte Carlo simulations and molecular dynamics simulations including strength. Based on the adsorption simulations, molecular dynamics simulations are employed to study the effect of pressure and temperature for the adsorption and diffusion of hydrogen. To study the effect of pressure, we select the 0.  ...[more]

Similar Datasets

| S-EPMC6316970 | biostudies-literature
| S-EPMC6992690 | biostudies-literature
| S-EPMC7378828 | biostudies-literature
| S-EPMC8190886 | biostudies-literature
| S-EPMC9574841 | biostudies-literature
| S-EPMC6410302 | biostudies-literature
| S-EPMC8447184 | biostudies-literature
| S-EPMC11205412 | biostudies-literature
| S-EPMC7674654 | biostudies-literature
| S-EPMC7591923 | biostudies-literature