Project description:Staphylococcus aureus is a significant bacterial pathogen that may penetrate through the barrier into the epidermis and dermis of the skin. We hypothesized that the S. aureus cell wall product lipoteichoic acid (LTA) may contribute to the development of inflammation and skin barrier defects; however, the effects of LTA in vivo are not well understood. In this study, we examined the effects induced by intradermal S. aureus LTA. We found that keratinocytes in LTA-treated skin were highly proliferative, expressing 10-fold increased levels of Ki67. Furthermore, we observed that LTA caused damage to the skin barrier with substantial loss of filaggrin and loricrin expression. In addition, levels of the IL-1 family of inflammatory cytokines, as well as the neutrophil-attracting chemokines Cxcl1 and Cxcl2, were increased. Concomitantly, we observed significant numbers of neutrophils infiltrating into the epidermis. Finally, we determined that LTA-induced signals were mediated in part through IL-1, because an IL-1 receptor type 1 antagonist ameliorated the effects of LTA, blocking neutrophil recruitment and increasing the expression of skin barrier proteins. In summary, we show that S. aureus LTA alone is sufficient to promote keratinocyte proliferation, inhibit expression of epidermal barrier proteins, induce IL-1 signaling, and recruit cells involved in skin inflammation.
Project description:Lipoteichoic acid (LTA), a glycerol phosphate surface polymer, is a component of the envelope of Gram-positive bacteria. However, the molecular basis for its synthesis or function is not known. Here we report that Staphylococcus aureus LtaS synthesizes glycerol phosphate LTA. Construction of a mutant S. aureus strain with inducible ltaS expression revealed that LTA synthesis is required for bacterial growth and cell division. An ltaS homologue of Bacillus subtilis restored LTA synthesis and the growth of ltaS mutant staphylococci. Thus, LtaS inhibition can be used as a target to treat human infections caused by antibiotic-resistant S. aureus or other bacterial pathogens.
Project description:Lipoteichoic acid (LTA) is a crucial cell envelope component in Gram-positive bacteria. In Staphylococcus aureus, the polyglycerolphosphate LTA molecule is synthesized by LtaS, a membrane-embedded enzyme with five N-terminal transmembrane helices (5TM domain) that are connected via a linker region to the C-terminal extracellular enzymatic domain (eLtaS). The LtaS enzyme is processed during bacterial growth, and the eLtaS domain is released from the bacterial membrane. Here we provide experimental evidence that the proteolytic cleavage following residues 215Ala-Leu-Ala217 is performed by the essential S. aureus signal peptidase SpsB, as depletion of spsB results in reduced LtaS processing. In addition, the introduction of a proline residue at the +1 position with respect to the cleavage site, a substitution known to inhibit signal peptidase-dependent cleavage, abolished LtaS processing at this site. It was further shown that the 5TM domain is crucial for enzyme function. The observation that the construction of hybrid proteins between two functional LtaS-type enzymes resulted in the production of proteins unable to synthesize LTA suggests that specific interactions between the 5TM and eLtaS domains are required for function. No enzyme activity was detected upon expression of the 5TM and eLtaS domains as separate fragments, indicating that the two domains cannot assemble postsynthesis to form a functional enzyme. Taken together, our data suggest that only the full-length LtaS enzyme is active in the LTA synthesis pathway and that the proteolytic cleavage step is used as a mechanism to irreversibly inactivate the enzyme.
Project description:Community-acquired Staphylococcus aureus infections often present as serious skin infections in otherwise healthy individuals and have become a worldwide epidemic problem fueled by the emergence of strains with antibiotic resistance, such as methicillin-resistant S. aureus (MRSA). The cytokine thymic stromal lymphopoietin (TSLP) is highly expressed in the skin and in other barrier surfaces and plays a deleterious role by promoting T helper cell type 2 (TH2) responses during allergic diseases; however, its role in host defense against bacterial infections has not been well elucidated. We describe a previously unrecognized non-TH2 role for TSLP in enhancing neutrophil killing of MRSA during an in vivo skin infection. Specifically, we demonstrate that TSLP acts directly on both mouse and human neutrophils to augment control of MRSA. Additionally, we show that TSLP also enhances killing of Streptococcus pyogenes, another clinically important cause of human skin infections. Unexpectedly, TSLP mechanistically mediates its antibacterial effect by directly engaging the complement C5 system to modulate production of reactive oxygen species by neutrophils. Thus, TSLP increases MRSA killing in a neutrophil- and complement-dependent manner, revealing a key connection between TSLP and the innate complement system, with potentially important therapeutic implications for control of MRSA infection.
Project description:Staphylococcus aureus synthesizes polyglycerol-phosphate lipoteichoic acid (LTA) from phosphatidylglycerol. LtaS, a predicted membrane protein with 5 N-terminal transmembrane helices followed by a large extracellular part (eLtaS), is required for staphylococcal growth and LTA synthesis. Here, we report the first crystal structure of the eLtaS domain at 1.2-A resolution and show that it assumes a sulfatase-like fold with an alpha/beta core and a C-terminal part composed of 4 anti-parallel beta-strands and a long alpha-helix. Overlaying eLtaS with sulfatase structures identified active site residues, which were confirmed by alanine substitution mutagenesis and in vivo enzyme function assays. The cocrystal structure with glycerol-phosphate and the coordination of a Mn(2+) cation allowed us to propose a reaction mechanism, whereby the active site threonine of LtaS functions as nucleophile for phosphatidylglycerol hydrolysis and formation of a covalent threonine-glycerolphosphate intermediate. These results will aid in the development of LtaS-specific inhibitors for S. aureus and many other Gram-positive pathogens.
Project description:Staphylococcus aureus lipoteichoic acid (LTA) is composed of a linear 1,3-linked polyglycerolphosphate chain and is tethered to the bacterial membrane by a glycolipid (diglucosyl-diacylglycerol [Glc2-DAG]). Glc2-DAG is synthesized in the bacterial cytoplasm by YpfP, a processive enzyme that transfers glucose to diacylglycerol (DAG), using UDP-glucose as its substrate. Here we present evidence that the S. aureus alpha-phosphoglucomutase (PgcA) and UTP:alpha-glucose 1-phosphate uridyltransferase (GtaB) homologs are required for the synthesis of Glc2-DAG. LtaA (lipoteichoic acid protein A), a predicted membrane permease whose structural gene is located in an operon with ypfP, is not involved in Glc2-DAG synthesis but is required for synthesis of glycolipid-anchored LTA. Our data suggest a model in which LtaA facilitates the transport of Glc2-DAG from the inner (cytoplasmic) leaflet to the outer leaflet of the plasma membrane, delivering Glc2-DAG as a substrate for LTA synthesis, thereby generating glycolipid-anchored LTA. Glycolipid anchoring of LTA appears to play an important role during infection, as S. aureus variants lacking ltaA display defects in the pathogenesis of animal infections.
Project description:HL-60 is a human promyelocytic leukemia cell line and differentiated HL-60 is an alternative to human primary neutrophils. The transcriptomic profile of undifferentiated HL-60 and dimethyl sulfoxide-differentiated HL-60 were determined at 4 and 24 hours after stimulation with high and low concentrations of Staphylococcus aureus lipoteichoic acids.
Project description:Staphylococcus aureus causes severe infections associated with inflammation, such as sepsis or osteomyelitis. Inflammatory processes are regulated by distinct lipid mediators (LMs) but how their biosynthetic pathways are orchestrated in S. aureus infections is elusive. We show that S. aureus strikingly not only modulates pro-inflammatory, but also inflammation-resolving LM pathways in murine osteomyelitis and osteoclasts as well as in human monocyte-derived macrophages (MDMs) with different phenotype. Targeted LM metabololipidomics using ultra-performance liquid chromatography-tandem mass spectrometry revealed massive generation of LM with distinct LM signature profiles in acute and chronic phases of S. aureus-induced murine osteomyelitis in vivo. In human MDM, S. aureus elevated cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1), but impaired the levels of 15-lipoxygenase-1 (15-LOX-1), with respective changes in LM signature profiles initiated by these enzymes, that is, elevated PGE2 and impaired specialized pro-resolving mediators, along with reduced M2-like phenotypic macrophage markers. The cell wall component, lipoteichoic acid (LTA), mimicked the impact of S. aureus elevating COX-2/mPGES-1 expression via NF-κB and p38 MAPK signalling in MDM, while the impairment of 15-LOX-1 correlates with reduced expression of Lamtor1. In conclusion, S. aureus dictates LM pathways via LTA resulting in a shift from anti-inflammatory M2-like towards pro-inflammatory M1-like LM signature profiles.
Project description:Surface proteins of Staphylococcus aureus are secreted across septal membranes for assembly into the bacterial cross-wall. This localized secretion requires the YSIRK/GXXS motif signal peptide, however the mechanisms supporting precursor trafficking are not known. We show here that the signal peptide of staphylococcal protein A (SpA) is cleaved at the YSIRK/GXXS motif. A SpA signal peptide mutant defective for YSIRK/GXXS cleavage is also impaired for septal secretion and co-purifies with SecA, SecDF and LtaS. SecA depletion blocks precursor targeting to septal membranes, whereas deletion of secDF diminishes SpA secretion into the cross-wall. Depletion of LtaS blocks lipoteichoic acid synthesis and abolishes SpA precursor trafficking to septal membranes. We propose a model whereby SecA directs SpA precursors to lipoteichoic acid-rich septal membranes for YSIRK/GXXS motif cleavage and secretion into the cross-wall.
Project description:Lipoteichoic acid (LTA) is one of two anionic polymers on the surface of the gram-positive bacterium Staphylococcus aureus. LTA is critical for the bacterium-host cell interaction and has recently been shown to be required for cell growth and division. To determine additional biological roles of LTA, we found it necessary to identify permissive conditions for the growth of an LTA-deficient mutant. We found that an LTA-deficient S. aureus Delta ltaS mutant could grow at 30 degrees C but not at 37 degrees C. Even at the permissive temperature, Delta ltaS mutant cells had aberrant cell division and separation, decreased autolysis, and reduced levels of peptidoglycan hydrolases. Upshift of Delta ltaS mutant cells to a nonpermissive temperature caused an inability to exclude Sytox green dye. A high-osmolarity growth medium remarkably rescued the colony-forming ability of the Delta ltaS mutant at 37 degrees C, indicating that LTA synthesis is required for growth under low-osmolarity conditions. In addition, the Delta ltaS mutation was found to be synthetically lethal with the Delta tagO mutation, which disrupts the synthesis of the other anionic polymer, wall teichoic acid (WTA), at 30 degrees C, suggesting that LTA and WTA compensate for one another in an essential function.