Unknown

Dataset Information

0

Facile generation of giant unilamellar vesicles using polyacrylamide gels.


ABSTRACT: Giant unilamellar vesicles (GUVs) are model cell-sized systems that have broad applications including drug delivery, analysis of membrane biophysics, and synthetic reconstitution of cellular machineries. Although numerous methods for the generation of free-floating GUVs have been established over the past few decades, only a fraction have successfully produced uniform vesicle populations both from charged lipids and in buffers of physiological ionic strength. In the method described here, we generate large numbers of free-floating GUVs through the rehydration of lipid films deposited on soft polyacrylamide (PAA) gels. We show that this technique produces high GUV concentrations for a range of lipid types, including charged ones, independently of the ionic strength of the buffer used. We demonstrate that the gentle hydration of PAA gels results in predominantly unilamellar vesicles, which is in contrast to comparable methods analyzed in this work. Unilamellarity is a defining feature of GUVs and the generation of uniform populations is key for many downstream applications. The PAA method is widely applicable and can be easily implemented with commonly utilized laboratory reagents, making it an appealing platform for the study of membrane biophysics.

SUBMITTER: Parigoris E 

PROVIDER: S-EPMC7075891 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Facile generation of giant unilamellar vesicles using polyacrylamide gels.

Parigoris Eric E   Dunkelmann Daniel L DL   Murphy Allan A   Wili Nino N   Kaech Andres A   Dumrese Claudia C   Jimenez-Rojo Noemi N   Silvan Unai U  

Scientific reports 20200316 1


Giant unilamellar vesicles (GUVs) are model cell-sized systems that have broad applications including drug delivery, analysis of membrane biophysics, and synthetic reconstitution of cellular machineries. Although numerous methods for the generation of free-floating GUVs have been established over the past few decades, only a fraction have successfully produced uniform vesicle populations both from charged lipids and in buffers of physiological ionic strength. In the method described here, we gen  ...[more]

Similar Datasets

| S-EPMC6648857 | biostudies-literature
| S-EPMC8172239 | biostudies-literature
| S-EPMC3699747 | biostudies-literature
| S-EPMC8783447 | biostudies-literature
| S-EPMC5564371 | biostudies-literature
| S-EPMC6013450 | biostudies-literature
| S-EPMC3037713 | biostudies-literature
| S-EPMC6003926 | biostudies-literature
| S-EPMC5764977 | biostudies-literature
| S-EPMC5377273 | biostudies-literature