Unknown

Dataset Information

0

An Engineered Microvirin Variant with Identical Structural Domains Potently Inhibits Human Immunodeficiency Virus and Hepatitis C Virus Cellular Entry.


ABSTRACT: Microvirin (MVN) is one of the human immunodeficiency virus (HIV-1) entry inhibitor lectins, which consists of two structural domains sharing 35% sequence identity and contrary to many other antiviral lectins, it exists as a monomer. In this study, we engineered an MVN variant, LUMS1, consisting of two domains with 100% sequence identity, thereby reducing the chemical heterogeneity, which is a major factor in eliciting immunogenicity. We determined carbohydrate binding of LUMS1 through NMR chemical shift perturbation and tested its anti-HIV activity in single-round infectivity assay and its anti-hepatitis C virus (HCV) activity in three different assays including HCVcc, HCVpp, and replicon assays. We further investigated the effect of LUMS1 on the activation of T helper (Th) and B cells through flow cytometry. LUMS1 showed binding to (1-2)mannobiose, the minimum glycan epitope of MVN, potently inhibited HIV-1 and HCV with EC50 of 37.2 and 45.3 nM, respectively, and showed negligible cytotoxicity with CC50 > 10 µM against PBMCs, Huh-7.5 and HepG2 cells, and 4.9 µM against TZM-bl cells. LUMS1 did not activate Th cells, and its stimulatory effect on B cells was markedly less as compared to MVN. Together, with these effects, LUMS1 represents a potential candidate for the development of antiviral therapies.

SUBMITTER: Shahid M 

PROVIDER: S-EPMC7077325 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

An Engineered Microvirin Variant with Identical Structural Domains Potently Inhibits Human Immunodeficiency Virus and Hepatitis C Virus Cellular Entry.

Shahid Munazza M   Qadir Amina A   Yang Jaewon J   Ahmad Izaz I   Zahid Hina H   Mirza Shaper S   Windisch Marc P MP   Shahzad-Ul-Hussan Syed S  

Viruses 20200211 2


Microvirin (MVN) is one of the human immunodeficiency virus (HIV-1) entry inhibitor lectins, which consists of two structural domains sharing 35% sequence identity and contrary to many other antiviral lectins, it exists as a monomer. In this study, we engineered an MVN variant, LUMS1, consisting of two domains with 100% sequence identity, thereby reducing the chemical heterogeneity, which is a major factor in eliciting immunogenicity. We determined carbohydrate binding of LUMS1 through NMR chemi  ...[more]

Similar Datasets

| S-EPMC6832200 | biostudies-literature
| S-EPMC191733 | biostudies-other
| S-EPMC2224412 | biostudies-literature
| S-EPMC2762325 | biostudies-literature
| S-EPMC2760816 | biostudies-literature
| S-EPMC4054341 | biostudies-literature
| S-EPMC1797269 | biostudies-literature
| S-EPMC7114534 | biostudies-literature
2020-12-02 | PXD019260 | Pride
| S-EPMC9709744 | biostudies-literature