Unknown

Dataset Information

0

Covalent Surface Functionalization of Bovine Serum Albumin to Magnesium Surface to Provide Robust Corrosion Inhibition and Enhance In Vitro Osteo-Inductivity.


ABSTRACT: Herein, we describe precisely a covalent modification of pure magnesium (Mg) surface and its application to induce in vitro osteogenic differentiation. The new concept of a chemical bonding method is proposed for developing stable chemical bonds on the Mg surface through the serial assembly of bioactive additives that include ascorbic acid (AA) and bovine serum albumin (BSA). We studied both the physicochemical and electrochemical properties using scanning electron microscopy and other techniques to confirm how the covalent bonding of BSA on Mg can, after coating, significantly enhance the chemical stability of the substrate. The modified Mg-OH-AA-BSA exhibits better anti-corrosion behavior with high corrosion potential (Ecorr = -0.96 V) and low corrosion current density (Icorr = 0.2 µA cm-2) as compared to the pure Mg (Ecorr = -1.46 V, Icorr = 10.42 µA cm-2). The outer layer of BSA on Mg protects the fast degradation rate of Mg, which is the consequence of the strong chemicals bonds between amine groups on BSA with carboxylic groups on AA as the possible mechanism of peptide bonds. Collectively, the results suggest that the surface-modified Mg provides a strong bio-interface, and enhances the proliferation and differentiation of pre-osteoblast (MC3T3-E1) cells through a protein-lipid interaction. We therefore conclude that the technique we describe provides a cost-effective and scalable way to generate chemically stable Mg surface that inherits a biological advantage in orthopedic and dental implants in clinical applications.

SUBMITTER: Lee SY 

PROVIDER: S-EPMC7077681 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Covalent Surface Functionalization of Bovine Serum Albumin to Magnesium Surface to Provide Robust Corrosion Inhibition and Enhance In Vitro Osteo-Inductivity.

Lee Seo Yeon SY   Shrestha Sita S   Shrestha Bishnu Kumar BK   Park Chan Hee CH   Kim Cheol Sang CS  

Polymers 20200213 2


Herein, we describe precisely a covalent modification of pure magnesium (Mg) surface and its application to induce in vitro osteogenic differentiation. The new concept of a chemical bonding method is proposed for developing stable chemical bonds on the Mg surface through the serial assembly of bioactive additives that include ascorbic acid (AA) and bovine serum albumin (BSA). We studied both the physicochemical and electrochemical properties using scanning electron microscopy and other technique  ...[more]

Similar Datasets

| S-EPMC4663789 | biostudies-literature
| S-EPMC5871601 | biostudies-literature
| S-EPMC3298385 | biostudies-other
| S-EPMC8373726 | biostudies-literature
2024-08-01 | PXD052283 | Pride
| S-EPMC7366031 | biostudies-literature
| S-EPMC10734745 | biostudies-literature
| S-EPMC6115706 | biostudies-literature
| S-EPMC4745080 | biostudies-other
| S-EPMC8840370 | biostudies-literature