Unknown

Dataset Information

0

Morphology, Rheology and Crystallization in Relation to the Viscosity Ratio of Polystyrene/Polypropylene Polymer Blends.


ABSTRACT: Microfibrillar and droplet morphology of polypropylene (PP) phase dispersed in polypropylene (PS) was fabricated by using melt-extrusion. This morphology was obtained by introducing isotactic PP (20 wt.%) with different viscosity in the PS matrix (80 wt.%). Furthermore, the rheological properties of the blend investigated as a function of the viscosity ratio K. The variations in blend morphology were related to crystallization, melting properties, and viscoelasticity. The blends with K >> 1 develop a fine morphology with PP microfibrils along the flow direction, while diameters of the dispersed PP droplets gradually increase with lower values of K = 1, or K << 1. Crystallinity of the prepared blends significantly decreases compared to neat PP, while the microfibrillar morphology induces homogeneous crystallization with small crystallites. This is reflected in a decrease of the crystallization temperature, small loss in the crystallinity, and lower melting temperature of the PS80/PP20 blend compared to neat PP. The storage moduli, loss moduli, and complex viscosity are highest for the microfibrillar morphology that presents retarded relaxation. The rheological properties are dominated by the dispersed phase (K > 1), or matrix (K < 1). The variation in blend properties with microfibrillar morphology can be clearly distinguished from heterogeneous blends containing PP droplets, providing an efficient tool to create a binary blend with unique properties.

SUBMITTER: Hammani S 

PROVIDER: S-EPMC7078875 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Morphology, Rheology and Crystallization in Relation to the Viscosity Ratio of Polystyrene/Polypropylene Polymer Blends.

Hammani Salim S   Moulai-Mostefa Nadji N   Samyn Pieter P   Bechelany Mikhael M   Dufresne Alain A   Barhoum Ahmed A  

Materials (Basel, Switzerland) 20200219 4


Microfibrillar and droplet morphology of polypropylene (PP) phase dispersed in polypropylene (PS) was fabricated by using melt-extrusion. This morphology was obtained by introducing isotactic PP (20 wt.%) with different viscosity in the PS matrix (80 wt.%). Furthermore, the rheological properties of the blend investigated as a function of the viscosity ratio <i>K</i>. The variations in blend morphology were related to crystallization, melting properties, and viscoelasticity. The blends with <i>K  ...[more]

Similar Datasets

| S-EPMC7292924 | biostudies-literature
| S-EPMC6835624 | biostudies-literature
| S-EPMC5509270 | biostudies-other
| S-EPMC7827940 | biostudies-literature
| S-EPMC2702008 | biostudies-literature
| S-EPMC5099942 | biostudies-literature
| S-EPMC6645428 | biostudies-literature
| S-EPMC6641394 | biostudies-literature
| S-EPMC8124672 | biostudies-literature
| S-EPMC6523105 | biostudies-literature