Unknown

Dataset Information

0

Trade-offs between host tolerances to different pathogens in plant-virus interactions.


ABSTRACT: Although accumulating evidence indicates that tolerance is a plant defence strategy against pathogens as widespread as resistance, how plants evolve tolerance is poorly understood. Theory predicts that hosts will evolve to maximize tolerance or resistance, but not both. Remarkably, most experimental works failed in finding this trade-off. We tested the hypothesis that the evolution of tolerance to one virus is traded-off against tolerance to others, rather than against resistance and identified the associated mechanisms. To do so, we challenged eighteen Arabidopsis thaliana genotypes with Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV). We characterized plant life-history trait modifications associated with reduced effects of TuMV and CMV on plant seed production (fecundity tolerance) and life period (mortality tolerance), both measured as a norm of reaction across viral loads (range tolerance). Also, we analysed resistance-tolerance and tolerance-tolerance trade-offs. Results indicate that tolerance to TuMV is associated with changes in the length of the pre-reproductive and reproductive periods, and tolerance to CMV with resource reallocation from growth to reproduction; and that tolerance to TuMV is traded-off against tolerance to CMV in a virulence-dependent manner. Thus, this work provides novel insights on the mechanisms of plant tolerance and highlights the importance of considering the combined effect of different pathogens to understand how plant defences evolve.

SUBMITTER: Montes N 

PROVIDER: S-EPMC7079720 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Trade-offs between host tolerances to different pathogens in plant-virus interactions.

Montes Nuria N   Vijayan Viji V   Pagán Israel I  

Virus evolution 20200101 1


Although accumulating evidence indicates that tolerance is a plant defence strategy against pathogens as widespread as resistance, how plants evolve tolerance is poorly understood. Theory predicts that hosts will evolve to maximize tolerance or resistance, but not both. Remarkably, most experimental works failed in finding this trade-off. We tested the hypothesis that the evolution of tolerance to one virus is traded-off against tolerance to others, rather than against resistance and identified  ...[more]

Similar Datasets

| S-EPMC3039750 | biostudies-literature
2019-03-07 | GSE114473 | GEO
| S-EPMC5360910 | biostudies-literature
| S-EPMC8189686 | biostudies-literature
| S-EPMC6686151 | biostudies-literature
| S-EPMC7330031 | biostudies-literature
| S-EPMC1681473 | biostudies-other
| S-EPMC3605057 | biostudies-literature
| S-EPMC9282840 | biostudies-literature
| S-EPMC6258955 | biostudies-literature