Unknown

Dataset Information

0

Viable but Nonculturable Escherichia coli O157:H7 and Salmonella enterica in Fresh Produce: Rapid Determination by Loop-Mediated Isothermal Amplification Coupled with a Propidium Monoazide Treatment.


ABSTRACT: Escherichia coli O157:H7 and Salmonella enterica are leading causes of foodborne outbreaks linked to fresh produce. Both species can enter the "viable but nonculturable" (VBNC) state that precludes detection using conventional culture-based or molecular methods. In this study, we assessed propidium monoazide-quantitative PCR (PMA-qPCR) assays and novel methods combining PMA and loop-mediated isothermal amplification (LAMP) for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce. The performance of PMA-LAMP assays targeting the wzy gene of E. coli O157:H7 and the agfA gene of S. enterica and the performance of PMA-qPCR assays were compared in pure culture and spiked tomato, lettuce, and spinach. No cross-reaction was observed in the specificity tests. The values representing the limit of detection (LOD) seen with PMA-LAMP were 9.0 CFU/reaction for E. coli O157:H7 and 4.6 CFU/reaction for S. enterica in pure culture and were 5.13?×?103 or 5.13?×?104 CFU/g for VBNC E. coli O157:H7 and 1.05?×?104 or 1.05?×?105 CFU/g for VBNC S. enterica in fresh produce, representing results comparable to those obtained by PMA-qPCR. Standard curves showed correlation coefficients ranging from 0.925 to 0.996, indicating a good quantitative capacity of PMA-LAMP for determining populations of both bacterial species in the VBNC state. The PMA-LAMP assay was completed with considerable economy of time (30?min versus 1 h) and achieved sensitivity and quantitative capacity comparable to those seen with a PMA-qPCR assay. PMA-LAMP is a rapid, sensitive, and robust method for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce.IMPORTANCE VBNC pathogenic bacteria pose a potential risk to the food industry because they do not multiply on routine microbiological media and thus can evade detection in conventional plating assays. Both E. coli O157:H7 and S. enterica have been reported to enter the VBNC state under a range of environmental stress conditions and to resuscitate under favorable conditions and are a potential cause of human infections. PMA-LAMP methods developed in this study provide a rapid, sensitive, and specific way to determine levels of VBNC E. coli O157:H7 and S. enterica in fresh produce, which potentially decreases the risks related to the consumption of fresh produce contaminated by enteric pathogens in this state. PMA-LAMP can be further applied in the field study to enhance our understanding of the fate of VBNC pathogens in the preharvest and postharvest stages of fresh produce.

SUBMITTER: Han L 

PROVIDER: S-EPMC7082562 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Viable but Nonculturable Escherichia coli O157:H7 and Salmonella enterica in Fresh Produce: Rapid Determination by Loop-Mediated Isothermal Amplification Coupled with a Propidium Monoazide Treatment.

Han Lu L   Wang Kaidi K   Ma Lina L   Delaquis Pascal P   Bach Susan S   Feng Jinsong J   Lu Xiaonan X  

Applied and environmental microbiology 20200318 7


<i>Escherichia coli</i> O157:H7 and <i>Salmonella enterica</i> are leading causes of foodborne outbreaks linked to fresh produce. Both species can enter the "viable but nonculturable" (VBNC) state that precludes detection using conventional culture-based or molecular methods. In this study, we assessed propidium monoazide-quantitative PCR (PMA-qPCR) assays and novel methods combining PMA and loop-mediated isothermal amplification (LAMP) for the detection and quantification of VBNC <i>E. coli</i>  ...[more]

Similar Datasets

| S-EPMC5740038 | biostudies-literature
| S-EPMC3131628 | biostudies-literature
| S-EPMC7411311 | biostudies-literature
| S-EPMC4999544 | biostudies-literature
| S-EPMC5064318 | biostudies-literature
| S-EPMC3127682 | biostudies-literature
| S-EPMC3131662 | biostudies-literature
| S-EPMC4651082 | biostudies-literature
| S-EPMC10673545 | biostudies-literature
| S-EPMC10288211 | biostudies-literature