Unknown

Dataset Information

0

Obesity Affects the Microbiota-Gut-Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators.


ABSTRACT: The hypothalamus regulates energy homeostasis by integrating environmental and internal signals to produce behavioral responses to start or stop eating. Many satiation signals are mediated by microbiota-derived metabolites coming from the gastrointestinal tract and acting also in the brain through a complex bidirectional communication system, the microbiota-gut-brain axis. In recent years, the intestinal microbiota has emerged as a critical regulator of hypothalamic appetite-related neuronal networks. Obesogenic high-fat diets (HFDs) enhance endocannabinoid levels, both in the brain and peripheral tissues. HFDs change the gut microbiota composition by altering the Firmicutes:Bacteroidetes ratio and causing endotoxemia mainly by rising the levels of lipopolysaccharide (LPS), the most potent immunogenic component of Gram-negative bacteria. Endotoxemia induces the collapse of the gut and brain barriers, interleukin 1? (IL1?)- and tumor necrosis factor ? (TNF?)-mediated neuroinflammatory responses and gliosis, which alter the appetite-regulatory circuits of the brain mediobasal hypothalamic area delimited by the median eminence. This review summarizes the emerging state-of-the-art evidence on the function of the "expanded endocannabinoid (eCB) system" or endocannabinoidome at the crossroads between intestinal microbiota, gut-brain communication and host metabolism; and highlights the critical role of this intersection in the onset of obesity.

SUBMITTER: Forte N 

PROVIDER: S-EPMC7084914 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Obesity Affects the Microbiota-Gut-Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators.

Forte Nicola N   Fernández-Rilo Alba Clara AC   Palomba Letizia L   Di Marzo Vincenzo V   Cristino Luigia L  

International journal of molecular sciences 20200225 5


The hypothalamus regulates energy homeostasis by integrating environmental and internal signals to produce behavioral responses to start or stop eating. Many satiation signals are mediated by microbiota-derived metabolites coming from the gastrointestinal tract and acting also in the brain through a complex bidirectional communication system, the microbiota-gut-brain axis. In recent years, the intestinal microbiota has emerged as a critical regulator of hypothalamic appetite-related neuronal net  ...[more]

Similar Datasets

| S-EPMC10289935 | biostudies-literature
| S-EPMC6304899 | biostudies-other
| S-EPMC8301405 | biostudies-literature
| S-EPMC7232453 | biostudies-literature
| S-EPMC8639879 | biostudies-literature
| S-EPMC6326209 | biostudies-literature
| S-EPMC6856467 | biostudies-literature
| S-EPMC10555787 | biostudies-literature
| S-EPMC9990496 | biostudies-literature
| S-EPMC7225614 | biostudies-literature