Unknown

Dataset Information

0

Neural systems underlying reward cue processing in early adolescence: The role of puberty and pubertal hormones.


ABSTRACT: Affective neuroscience research suggests that maturational changes in reward circuitry during adolescence present opportunities for new learning, but likely also contribute to increases in vulnerability for psychiatric disorders such as depression and substance abuse. Basic research in animal models and human neuroimaging has made progress in understanding the normal development of reward circuitry in adolescence, yet, few functional neuroimaging studies have examined puberty-related influences on the functioning of this circuitry. The goal of this study was to address this gap by examining the extent to which striatal activation and cortico-striatal functional connectivity to cues predicting upcoming rewards would be positively associated with pubertal status and levels of pubertal hormones (dehydroepiandrosterone, testosterone, estradiol). Participants included 79 adolescents (10-13?year olds; 47 girls) varying in pubertal status who performed a novel reward cue processing task during fMRI. Pubertal maturation was assessed using sex-specific standardized composite measures based on Tanner staging (self-report and clinical assessment) and scores from the Pubertal Development Scale. These composite measures were computed to index overall pubertal maturation as well as maturation of the adrenal and gonadal axes separately for boys and girls. Basal levels of circulating pubertal hormones were measured using immunoassays from three samples collected weekly upon awakening across a three-week period. Results indicated greater striatal activation and functional connectivity between nucleus accumbens (NAcc) and medial prefrontal cortex (mPFC) to reward cue (vs. no reward cue) on this task. Also, girls with higher levels of estradiol showed reduced activation in left and right caudate and greater NAcc-putamen connectivity. Girls with higher levels of testosterone showed greater NAcc connectivity with the anterior cingulate cortex and the insula. There were no significant associations in boys. Findings suggest that patterns of activation and connectivity in cortico-striatal regions are associated with reward cue processing, particularly in girls. Longitudinal follow-up neuroimaging studies are needed to fully characterize puberty-specific effects on the development of these neural regions and how such changes may contribute to pathways of risk or resilience in adolescence.

SUBMITTER: Ladouceur CD 

PROVIDER: S-EPMC7085287 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Neural systems underlying reward cue processing in early adolescence: The role of puberty and pubertal hormones.

Ladouceur Cecile D CD   Kerestes Rebecca R   Schlund Michael W MW   Shirtcliff Elizabeth A EA   Lee Yoojin Y   Dahl Ronald E RE  

Psychoneuroendocrinology 20181213


Affective neuroscience research suggests that maturational changes in reward circuitry during adolescence present opportunities for new learning, but likely also contribute to increases in vulnerability for psychiatric disorders such as depression and substance abuse. Basic research in animal models and human neuroimaging has made progress in understanding the normal development of reward circuitry in adolescence, yet, few functional neuroimaging studies have examined puberty-related influences  ...[more]

Similar Datasets

| S-EPMC6233806 | biostudies-other
| S-EPMC4712408 | biostudies-literature
| S-EPMC4631150 | biostudies-literature
| S-EPMC4457505 | biostudies-literature
| S-EPMC9033203 | biostudies-literature
| S-EPMC5418124 | biostudies-literature
| S-EPMC4568659 | biostudies-literature
| S-EPMC6336530 | biostudies-literature
| S-EPMC3085008 | biostudies-literature
| S-EPMC4330550 | biostudies-literature