Chinese ASCVD risk equations rather than pooled cohort equations are better to identify macro- and microcirculation abnormalities.
Ontology highlight
ABSTRACT: BACKGROUND:We hypothesized that discriminating the early subclinical organ damage would serve as a great opportunity for prevention against atherosclerotic cardiovascular disease (ASCVD). Brachial-ankle pulse wave velocity (baPWV), low retinal vascular fractal dimension, and albuminuria are surrogates of subclinical vascular changes. METHODS:The aim of this study was to use Pooled Cohort Equations (PCE) and ASCVD risk equations derived from "Prediction for ASCVD Risk in China project (CHINA-PAR)" to observe the prevalence of macro- and microcirculation abnormalities. A total of 2166 subjects were involved. Characteristics were investigated using questionnaire and physical examinations. We calculated the urine albumin to creatinine ratio (UACR). The baPWV was measured using a fully automatic arteriosclerosis detector. The retinal vascular fractal dimension was measured by a semiautomated computer-based program. The 10-year ASCVD risk was estimated using the PCE and CHINA-PAR model. RESULTS:The cut-off values for the elevated baPWV were 2.82 and 2.92% in the PCE model and CHINA-PAR model, respectively, with nearly 85% sensitivity and an average specificity of 74%. For low retinal fractal dimension, at the cut-off point of 3.8%, we acquired an acceptable sensitivity of 66.27-68.24% and specificity of 62.57-67.45%. All the C-statistics presented a significant improvement from the PCE model to the CHINA-PAR model (P?
SUBMITTER: Li Q
PROVIDER: S-EPMC7092674 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA