Unknown

Dataset Information

0

Strongly Coupled Redox-Linked Conformational Switching at the Active Site of the Non-Heme Iron-Dependent Dioxygenase, TauD.


ABSTRACT: 2-Oxoglutarate (2OG)-dependent dioxygenases catalyze C-H activation while performing a wide range of chemical transformations. In contrast to their heme analogues, non-heme iron centers afford greater structural flexibility with important implications for their diverse catalytic mechanisms. We characterize an in situ structural model of the putative transient ferric intermediate of 2OG:taurine dioxygenase (TauD) by using a combination of spectroelectrochemical and semiempirical computational methods, demonstrating that the Fe(III/II) transition involves a substantial, fully reversible, redox-linked conformational change at the active site. This rearrangement alters the apparent redox potential of the active site between -127 mV for reduction of the ferric state and +171 mV for oxidation of the ferrous state of the 2OG-Fe-TauD complex. Structural perturbations exhibit limited sensitivity to mediator concentrations and potential pulse duration. Similar changes were observed in the Fe-TauD and taurine-2OG-Fe-TauD complexes, thus attributing the reorganization to the protein moiety rather than the cosubstrates. Redox-difference infrared spectra indicate a reorganization of the protein backbone in addition to the involvement of carboxylate and histidine ligands. Quantitative modeling of the transient redox response using two alternative reaction schemes across a variety of experimental conditions strongly supports the proposal for intrinsic protein reorganization as the origin of the experimental observations.

SUBMITTER: John CW 

PROVIDER: S-EPMC7092797 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Strongly Coupled Redox-Linked Conformational Switching at the Active Site of the Non-Heme Iron-Dependent Dioxygenase, TauD.

John Christopher W CW   Swain Greg M GM   Hausinger Robert P RP   Proshlyakov Denis A DA  

The journal of physical chemistry. B 20190906 37


2-Oxoglutarate (2OG)-dependent dioxygenases catalyze C-H activation while performing a wide range of chemical transformations. In contrast to their heme analogues, non-heme iron centers afford greater structural flexibility with important implications for their diverse catalytic mechanisms. We characterize an <i>in situ</i> structural model of the putative transient ferric intermediate of 2OG:taurine dioxygenase (TauD) by using a combination of spectroelectrochemical and semiempirical computatio  ...[more]

Similar Datasets

| S-EPMC6800575 | biostudies-literature
| S-EPMC7092798 | biostudies-literature
| S-EPMC3757525 | biostudies-literature
| S-EPMC3010413 | biostudies-literature
| S-EPMC2726748 | biostudies-literature
| S-EPMC2628974 | biostudies-literature
| S-EPMC9571987 | biostudies-literature
| S-EPMC5453726 | biostudies-literature
| S-EPMC3039370 | biostudies-literature
| S-EPMC2934673 | biostudies-literature