Exosomal miR-19a from adipose-derived stem cells suppresses differentiation of corneal keratocytes into myofibroblasts.
Ontology highlight
ABSTRACT: In this study, we investigated the effects of exosomal microRNAs (miRNAs) from adipose-derived stem cells (ADSCs) on the differentiation of rabbit corneal keratocytes. Keratocytes grown in 10% FBS differentiated into myofibroblasts by increasing HIPK2 kinase levels and activity. HIPK2 enhanced p53 and Smad3 pathways in FBS-induced keratocytes. Keratocytes grown in 10% FBS also showed increased levels of pro-fibrotic proteins, including collagen III, MMP9, fibronectin, and ?-SMA. These effects were reversed by knocking down HIPK2. Moreover, ADSCs and exosomes derived from ADSCs (ADSCs-Exo) suppressed FBS-induced differentiation of keratocytes into myofibroblasts by inhibiting HIPK2. Quantitative RT-PCR analysis showed that ADSCs-Exos were significantly enriched in miRNA-19a as compared to ADSCs. Targetscan and dual luciferase reporter assays confirmed that the HIPK2 3'UTR is a direct binding target of miR-19a. Keratocytes treated with 10% FBS and ADSCs-Exo-miR-19a-agomir or ADSCs-Exo-NC-antagomir showed significantly lower levels of HIPK2, phospho-Smad3, phospho-p53, collagen III, MMP9, fibronectin and ?-SMA than those treated with 10% FBS plus ADSCs-Exo-NC-agomir or ADSCs-Exo-miR-19a-antagomir. Thus, exosomal miR-19a derived from the ADSCs suppresses FBS-induced differentiation of rabbit corneal keratocytes into myofibroblasts by inhibiting HIPK2 expression. This suggests their potential use in the treatment of corneal fibrosis.
SUBMITTER: Shen T
PROVIDER: S-EPMC7093196 | biostudies-literature | 2020 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA