Project description:BRAF and NRAS mutations arise early in melanoma development, but their associations with low-penetrance melanoma susceptibility loci remain unknown. In the Genes, Environment and Melanoma Study, 1,223 European-origin participants had their incident invasive primary melanomas screened for BRAF/NRAS mutations and germline DNA genotyped for 47 single-nucleotide polymorphisms identified as low-penetrant melanoma-risk variants. We used multinomial logistic regression to simultaneously examine each single-nucleotide polymorphism's relationship to BRAF V600E, BRAF V600K, BRAF other, and NRAS+ relative to BRAF-/NRAS- melanoma adjusted for study features. IRF4 rs12203592*T was associated with BRAF V600E (odds ratio [OR] = 0.59, 95% confidence interval [CI] = 0.43-0.79) and V600K (OR = 0.65, 95% CI = 0.41-1.03), but not BRAF other or NRAS+ melanoma. A global test of etiologic heterogeneity (Pglobal = 0.001) passed false discovery (Pglobal = 0.0026). PLA2G6 rs132985*T was associated with BRAF V600E (OR = 1.32, 95% CI = 1.05-1.67) and BRAF other (OR = 1.82, 95% CI = 1.11-2.98), but not BRAF V600K or NRAS+ melanoma. The test for etiologic heterogeneity (Pglobal) was 0.005. The IRF4 rs12203592 associations were slightly attenuated after adjustment for melanoma-risk phenotypes. The PLA2G6 rs132985 associations were independent of phenotypes. IRF4 and PLA2G6 inherited genotypes may influence melanoma BRAF/NRAS subtype development.
Project description:Importance:We previously reported that survival is poorer from histopathologically amelanotic than pigmented melanoma because of more advanced stage at diagnosis. Identifying patients at risk of amelanotic melanoma might enable earlier diagnosis and improved survival; however, the phenotypic characteristics and underlying genetics associated with amelanotic melanoma are unknown. Objective:To determine whether phenotypic characteristics, carriage of MC1R variants, and history of amelanotic melanoma are associated with histopathologically amelanotic melanoma. Design, Setting, and Participants:The Genes, Environment, and Melanoma (GEM) study is an international cohort study that enrolled patients with incident primary cutaneous melanomas from population-based and hospital-based cancer registries (1998 to 2003). The GEM participants included here were 2387 patients with data for phenotypes, MC1R genotype, and primary melanomas scored for histopathologic pigmentation. Of these 2387 patients with incident melanomas scored for pigmentation, 527 had prior primary melanomas also scored for pigmentation. Main Outcomes and Measures:Associations of phenotypic characteristics (freckles, nevi, phenotypic index) and MC1R status with incident amelanotic melanomas were evaluated using logistic regression models adjusted for age, sex, study center, and primary status (single or multiple primary melanoma); odds ratios (ORs) and 95% CIs are reported. Association of histopathologic pigmentation between incident and prior melanomas was analyzed using an exact logistic regression model. Results:This study included 2387 patients (1065 women, 1322 men; mean [SD] age at diagnosis, 58.3 [16.1] years) and 2917 primary melanomas. In a multivariable model including phenotypic characteristics, absence of back nevi, presence of many freckles, and a sun-sensitive phenotypic index were independently associated with amelanotic melanoma. Carriage of MC1R variants was associated with amelanotic melanoma but lost statistical significance in a model with phenotype. Further, patients with incident primary amelanotic melanomas were more likely to have had a prior primary amelanotic melanoma (OR, 4.62; 95% CI, 1.25-14.13) than those with incident primary pigmented melanomas. Conclusions and Relevance:Absence of back nevi, presence of many freckles, a sun-sensitive phenotypic index, and prior amelanotic melanoma increase odds for development of amelanotic melanoma. An increased index of suspicion for melanoma in presenting nonpigmented lesions and more careful examination for signs of amelanotic melanoma during periodic skin examination in patients at increased odds of amelanotic melanoma might lead to earlier diagnosis and improved survival.
Project description:Recent studies, including genome-wide association studies, have identified several putative low-penetrance susceptibility loci for melanoma. We sought to determine their generalizability to genetic predisposition for multiple primary melanoma in the international population-based Genes, Environment, and Melanoma (GEM) Study. GEM is a case-control study of 1,206 incident cases of multiple primary melanoma and 2,469 incident first primary melanoma participants as the control group. We investigated the odds of developing multiple primary melanoma for 47 SNPs from 21 distinct genetic regions previously reported to be associated with melanoma. ORs and 95% confidence intervals were determined using logistic regression models adjusted for baseline features (age, sex, age by sex interaction, and study center). We investigated univariable models and built multivariable models to assess independent effects of SNPs. Eleven SNPs in 6 gene neighborhoods (TERT/CLPTM1L, TYRP1, MTAP, TYR, NCOA6, and MX2) and a PARP1 haplotype were associated with multiple primary melanoma. In a multivariable model that included only the most statistically significant findings from univariable modeling and adjusted for pigmentary phenotype, back nevi, and baseline features, we found TERT/CLPTM1L rs401681 (P = 0.004), TYRP1 rs2733832 (P = 0.006), MTAP rs1335510 (P = 0.0005), TYR rs10830253 (P = 0.003), and MX2 rs45430 (P = 0.008) to be significantly associated with multiple primary melanoma, while NCOA6 rs4911442 approached significance (P = 0.06). The GEM Study provides additional evidence for the relevance of these genetic regions to melanoma risk and estimates the magnitude of the observed genetic effect on development of subsequent primary melanoma.
Project description:Amelanotic/hypomelanotic melanoma is a clinicopathologic subtype with absent or minimal melanin. This study assessed previously reported coding variants in albinism genes (TYR, OCA2, TYRP1, SLC45A2, SLC24A5, LRMDA) and common intronic, regulatory variants of OCA2 in individuals with amelanotic/hypomelanotic melanoma, pigmented melanoma cases and controls. Exome sequencing was available for 28 individuals with amelanotic/hypomelanotic melanoma and 303 individuals with pigmented melanoma, which were compared to whole exome data from 1144 Australian controls. Microarray genotyping was available for a further 17 amelanotic/hypomelanotic melanoma, 86 pigmented melanoma, 147 melanoma cases (pigmentation unknown) and 652 unaffected controls. Rare deleterious variants in TYR/OCA1 were more common in amelanotic/hypomelanotic melanoma cases than pigmented melanoma cases (set mixed model association tests P = 0.0088). The OCA2 hypomorphic allele p.V443I was more common in melanoma cases (1.8%) than controls (1.0%, X2 P = 0.02), and more so in amelanotic/hypomelanotic melanoma (4.4%, X2 P = 0.007). No amelanotic/hypomelanotic melanoma cases carried an eye and skin darkening haplotype of OCA2 (including rs7174027), present in 7.1% of pigmented melanoma cases (P = 0.0005) and 9.4% controls. Variants in TYR and OCA2 may play a role in amelanotic/hypomelanotic melanoma susceptibility. We suggest that somatic loss of function at these loci could contribute to the loss of tumor pigmentation, consistent with this we found a higher rate of somatic mutation in TYR/OCA2 in amelanotic/hypomelanotic melanoma vs pigmented melanoma samples (28.6% vs 3.0%; P = 0.021) from The Cancer Genome Atlas Skin Cutaneous Melanoma collection.
Project description:IMPORTANCE Previous studies have reported that histopathologically amelanotic melanoma is associated with poorer survival than pigmented melanoma; however, small numbers of amelanotic melanomas, selected populations, lack of centralized pathologic review, or no adjustment for stage limit the interpretation or generalization of results from prior studies.OBJECTIVE To compare melanoma-specific survival between patients with histopathologically amelanotic and those with pigmented melanoma in a large international population-based study.DESIGN, SETTING, AND PARTICIPANTS Survival analysis with a median follow-up of 7.6 years.The study population comprised 2995 patients with 3486 invasive primary melanomas centrally scored for histologic pigmentation from the Genes, Environment, and Melanoma(GEM) Study, which enrolled incident cases of melanoma diagnosed in 1998 through 2003 from international population-based cancer registries.MAIN OUTCOMES AND MEASURES Clinicopathologic predictors and melanoma-specific survival of histologically amelanotic and pigmented melanoma were compared using generalized estimating equations and Cox regression models, respectively.RESULTS Of 3467 melanomas, 275 (8%) were histopathologically amelanotic. Female sex,nodular and unclassified or other histologic subtypes, increased Breslow thickness, presence of mitoses, severe solar elastosis, and lack of a coexisting nevus were independently associated with amelanotic melanoma (each P < .05). Amelanotic melanoma was generally ofa higher American Joint Committee on Cancer (AJCC) tumor stage at diagnosis (odds ratios[ORs] [95%CIs] between 2.9 [1.8-4.6] and 11.1 [5.8-21.2] for tumor stages between T1b and T3b and ORs [95%CIs] of 24.6 [13.6-44.4] for T4a and 29.1 [15.5-54.9] for T4b relative to T1a;P value for trend, <.001) than pigmented melanoma. Hazard of death from melanoma was higher for amelanotic than for pigmented melanoma (hazard ratio [HR], 2.0; 95%CI, 1.4-3.0)(P < .001), adjusted for age, sex, anatomic site, and study design variables, but survival did not differ once AJCC tumor stage was also taken into account (HR, 0.8; 95%CI, 0.5-1.2)(P = .36).CONCLUSIONS AND RELEVANCE At the population level, survival after diagnosis of amelanotic melanoma is poorer than after pigmented melanoma because of its more advanced stage at diagnosis. It is probable that amelanotic melanomas present at more advanced tumor stages because they are difficult to diagnose. The association of amelanotic melanoma with presence of mitoses independently of Breslow thickness and other clinicopathologic characteristics suggests that amelanotic melanomas might also grow faster than pigmented melanomas. New strategies for early diagnosis and investigation of the biological properties of amelanotic melanoma are warranted.
Project description:The importance of inflammation pathways to the development of many human cancers prompted us to examine the associations between single-nucleotide polymorphisms (SNP) in inflammation-related genes and risk of ovarian cancer. In a multisite case-control study, we genotyped SNPs in a large panel of inflammatory genes in 930 epithelial ovarian cancer cases and 1,037 controls using a custom array and analyzed by logistic regression. SNPs with P < 0.10 were evaluated among 3,143 cases and 2,102 controls from the Follow-up of Ovarian Cancer Genetic Association and Interaction Studies (FOCI) post-GWAS collaboration. Combined analysis revealed association with SNPs rs17561 and rs4848300 in the interleukin gene IL1A which varied by histologic subtype (P(heterogeneity) = 0.03). For example, IL1A rs17561, which correlates with numerous inflammatory phenotypes, was associated with decreased risk of clear cell, mucinous, and endometrioid subtype, but not with the most common serous subtype. Genotype at rs1864414 in the arachidonate 5-lipoxygenase ALOX5 was also associated with decreased risk. Thus, inherited variation in IL1A and ALOX5 seems to affect ovarian cancer risk which, for IL1A, is limited to rarer subtypes. Given the importance of inflammation in tumorigenesis and growing evidence of subtype-specific features in ovarian cancer, functional investigations will be important to help clarify the importance of inherited variation related to inflammation in ovarian carcinogenesis.
Project description:BACKGROUND:Women have a better melanoma prognosis, and fairer skin/hair colour. The presence of inherited MC1R variants has been associated with a better melanoma prognosis, but its interaction with sex is unknown. OBJECTIVES:To evaluate the relationship between germline MC1R status and survival, and determine any association with sex. METHODS:This was a cohort study including 1341 patients with melanoma from the Melanoma Unit of the Hospital Clinic of Barcelona, between January 1996 and April 2018. We examined known sex-related prognosis factors as they relate to features of melanoma and evaluated the sex-specific role of MC1R in overall and melanoma-specific survival. Hazard ratios (HRs) were calculated using univariate and multivariate Cox logistic regression. RESULTS:Men showed lower overall survival than women (P < 0·001) and the presence of inherited MC1R variants was not associated with better survival in our cohort. However, in women the presence of MC1R variants was associated with better overall survival in the multivariate analysis [HR 0·57, 95% confidence interval (CI) 0·38-0·85; P = 0·006] but not in men [HR 1·26, 95% CI 0·89-1·79; P = 0·185 (P-value for interaction 0·004)]. Analysis performed for melanoma-specific survival showed the same level of significance. CONCLUSIONS:Inherited MC1R variants are associated with improved overall survival in women with melanoma but not in men. Intrinsic sex-dependent features can modify the role of specific genes in melanoma prognosis. We believe that survival studies of patients with melanoma should include analysis by sex and MC1R genotype. What's already known about this topic? Inherited MC1R variants have been associated with a better melanoma prognosis, but their interaction with sex is unknown. What does this study add? MC1R variants are related to better overall survival and melanoma-specific survival in women but not in men. What is the translational message? These differences between the sexes could imply future changes in melanoma follow-up and treatment strategies. This provides a basis for understanding the interaction between sex-related genes and germline variants in cancer.
Project description:The aim of the present study was to present a rare case of primary acral amelanotic malignant melanoma (AMM). A 61-year-old man developed an aggressive tumor in the front part of the sole of his left foot, which continued to increase in size for >1 year. The biopsy results revealed epidermis loss, ulcer formation, and the presence of abundant allotropic tumor cells throughout the dermis, with deeply stained nuclei, light reddish cytoplasm and visible multinucleated giant cells with heterogeneous nuclear division. The tumor cells exhibited partial formation of nests and bundled distribution, and there were no observed pigment particles. The diagnosis was confirmed as AMM based on the findings of the histopathological examination and immunohistochemical staining for Ki67 (+++), Melan-A (+++), human melanoma black 45 (+), CD20 (-), cytokeratin (CK)7 (-) and CK5/6 (-).
Project description:BackgroundWe previously identified a panel of genes associated with outcome of ovarian cancer. The purpose of the current study was to assess whether variants in these genes correlated with ovarian cancer risk.Methods and findingsWomen with and without invasive ovarian cancer (749 cases, 1,041 controls) were genotyped at 136 single nucleotide polymorphisms (SNPs) within 13 candidate genes. Risk was estimated for each SNP and for overall variation within each gene. At the gene-level, variation within MSL1 (male-specific lethal-1 homolog) was associated with risk of serous cancer (p = 0.03); haplotypes within PRPF31 (PRP31 pre-mRNA processing factor 31 homolog) were associated with risk of invasive disease (p = 0.03). MSL1 rs7211770 was associated with decreased risk of serous disease (OR 0.81, 95% CI 0.66-0.98; p = 0.03). SNPs in MFSD7, BTN3A3, ZNF200, PTPRS, and CCND1A were inversely associated with risk (p<0.05), and there was increased risk at HEXIM1 rs1053578 (p = 0.04, OR 1.40, 95% CI 1.02-1.91).ConclusionsTumor studies can reveal novel genes worthy of follow-up for cancer susceptibility. Here, we found that inherited markers in the gene encoding MSL1, part of a complex that modifies the histone H4, may decrease risk of invasive serous ovarian cancer.
Project description:Single nucleotide variants (SNVs) in regulatory DNA are linked to inherited cancer risk. Massively parallel reporter assays (MPRA) of 5,031 SNVs linked to 14 neoplasms comprising >90% of human malignancies were performed in pertinent diploid cell types then integrated with matching chromatin accessibility, looping, and eQTL data to identify 411 regulatory SNVs and their putative target eGenes. The latter highlighted specific protein networks in lifetime cancer risk, including mitochondrial translation, proliferation, signaling, adhesion, and immunity. This cancer SNV compendium underscores the importance of studying pathogenic variants in disease-relevant cells and implicates specific dysregulated gene networks in cancer predisposition. It also indicates that inherited cancer risk can impact the same gene via orthogonal genetic mechanisms of dysregulated expression as well as protein coding sequence alteration and demonstrates that a subset of germline-encoded risk genes also enable tumor growth of established cancers.