SLAM-MS: Mutation scanning of stem-loop amplicons with TaqMan probes by quantitative DNA melting analysis.
Ontology highlight
ABSTRACT: DNA Melting Analysis (DMA) with a TaqMan probe covering the mutation "hot spot" is a simple, sensitive, and "closed tube" method of mutation detection. However, DMA requires asymmetric PCR to produce single-stranded amplicons capable of interacting with TaqMan probes. This makes quantitative analysis impossible owing to low amplification efficiency. Moreover, bi-strand mutation detection necessitates two independent PCRs. The SLAM-MS (Stem-Loop AMplicon Mutation Scanning) assay, in which symmetric PCR is performed using primers with 5'-universal primer sequence (UPS), has been developed to detect KRAS mutations. Some of the resulting amplicons, sense and antisense, adopt single-stranded stem-loop conformation and become unable to renature, but able to hybridize with TaqMan probes. Hybrids of stem-loops and complementary TaqMan probes are suitable for melting analysis and simultaneous bi-strand mutation scanning. In addition, the areas under the melting peaks are determined by the PeakFit software, a non-linear iterative curve fitting program, to evaluate the wild-type/mutant allele ratio. Thus, the SLAM-MS assay permits quantification of both the number of copies of the target sequence and the percentage of mutant alleles. For mutant enrichment, the SLAM-MS assay uses TaqMan probes as PCR blocking agents allowing an ~10 times higher mutation detection sensitivity than High Resolution Melting (HRM) assay.
SUBMITTER: Kondratova VN
PROVIDER: S-EPMC7096437 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA