Printable Highly Stable and Superfast Humidity Sensor Based on Two Dimensional Molybdenum Diselenide.
Ontology highlight
ABSTRACT: Transition metal dichalcogenides (TMDCs) are promising materials for sensing applications, due to their exceptional high performance in nano-electronics. Inherentely, the chemical and thermal responses of TMDCs are highly stable, hence, they pave way for real time sensor applications. This article proposes inceptively a stable and superfast humidity sensor using two-dimensional (2D) Molybdenum diselenide (MoSe2) through printed technlogies. The 2D MoSe2 ink is synthesized through wet grinding to achieve few-layered nano-flakes. Inter digital electrodes (IDEs) are fabricated via screen-printing on Polyethylene terephthalate (PET) substrate and thin film of MoSe2 nano-flakes is fabricated through spin coating. The impedance and capacitance response are recorded at 1?kHz between temperature levels ranging from 20-30?°C. The impedance and capacitance hysteresis results are recorded <1.98% and <2.36%, respectively, ensuring very good repeatability during humidification and dehumidification. The stability of impedance and capacitance response are recorded with maximum error rate of ~ 0.162% and ~ 0.183%, respectively. The proposed sensor shows fast impedance response time (Tres) of ~ 0.96?s, and recovery time (Trec) of ~ 1.03?s, which has Tres of ~ 1.87?s, and Trec of ~ 2.13?s for capacitance. It is aimed to develop a high performance and stable humidity sensor for various monitoring applications.
SUBMITTER: Awais M
PROVIDER: S-EPMC7099085 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA