Unknown

Dataset Information

0

Generalization properties of neural network approximations to frustrated magnet ground states.


ABSTRACT: Neural quantum states (NQS) attract a lot of attention due to their potential to serve as a very expressive variational ansatz for quantum many-body systems. Here we study the main factors governing the applicability of NQS to frustrated magnets by training neural networks to approximate ground states of several moderately-sized Hamiltonians using the corresponding wave function structure on a small subset of the Hilbert space basis as training dataset. We notice that generalization quality, i.e. the ability to learn from a limited number of samples and correctly approximate the target state on the rest of the space, drops abruptly when frustration is increased. We also show that learning the sign structure is considerably more difficult than learning amplitudes. Finally, we conclude that the main issue to be addressed at this stage, in order to use the method of NQS for simulating realistic models, is that of generalization rather than expressibility.

SUBMITTER: Westerhout T 

PROVIDER: S-EPMC7101385 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Generalization properties of neural network approximations to frustrated magnet ground states.

Westerhout Tom T   Astrakhantsev Nikita N   Tikhonov Konstantin S KS   Katsnelson Mikhail I MI   Bagrov Andrey A AA  

Nature communications 20200327 1


Neural quantum states (NQS) attract a lot of attention due to their potential to serve as a very expressive variational ansatz for quantum many-body systems. Here we study the main factors governing the applicability of NQS to frustrated magnets by training neural networks to approximate ground states of several moderately-sized Hamiltonians using the corresponding wave function structure on a small subset of the Hilbert space basis as training dataset. We notice that generalization quality, i.e  ...[more]

Similar Datasets

| S-EPMC4667438 | biostudies-literature
| S-EPMC3884522 | biostudies-other
| S-EPMC9425115 | biostudies-literature
| S-EPMC6561203 | biostudies-literature
| S-EPMC7648753 | biostudies-literature
| S-EPMC4577184 | biostudies-other
| S-EPMC11231255 | biostudies-literature
| S-EPMC3988808 | biostudies-literature
| S-EPMC6028575 | biostudies-literature
| S-EPMC5548730 | biostudies-literature