Unknown

Dataset Information

0

Predicting Lymph Node Metastasis in Head and Neck Cancer by Combining Many-objective Radiomics and 3-dimensioal Convolutional Neural Network through Evidential Reasoning.


ABSTRACT: Lymph node metastasis (LNM) is a significant prognostic factor in patients with head and neck cancer, and the ability to predict it accurately is essential for treatment optimization. PET and CT imaging are routinely used for LNM identification. However, uncertainties of LNM always exist especially for small size or reactive nodes. Radiomics and deep learning are the two preferred imaging-based strategies for node malignancy prediction. Radiomics models are built based on handcrafted features, and deep learning can learn the features automatically. We proposed a hybrid predictive model that combines many-objective radiomics (MO-radiomics) and 3-dimensional convolutional neural network (3D-CNN) through evidential reasoning (ER) approach. To build a more reliable model, we proposed a new many-objective radiomics model. Meanwhile, we designed a 3D-CNN that fully utilizes spatial contextual information. Finally, the outputs were fused through the ER approach. To study the predictability of the two modalities, three models were built for PET, CT, and PET& CT. The results showed that the model performed best when the two modalities were combined. Moreover, we showed that the quantitative results obtained from the hybrid model were better than those obtained from MO-radiomics and 3D-CNN.

SUBMITTER: Zhou Z 

PROVIDER: S-EPMC7103090 | biostudies-literature | 2018 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Predicting Lymph Node Metastasis in Head and Neck Cancer by Combining Many-objective Radiomics and 3-dimensioal Convolutional Neural Network through Evidential Reasoning.

Zhou Zhiguo Z   Chen Liyuan L   Sher David D   Zhang Qiongwen Q   Shah Jennifer J   Pham Nhat-Long NL   Jiang Steve S   Wang Jing J  

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 20180701


Lymph node metastasis (LNM) is a significant prognostic factor in patients with head and neck cancer, and the ability to predict it accurately is essential for treatment optimization. PET and CT imaging are routinely used for LNM identification. However, uncertainties of LNM always exist especially for small size or reactive nodes. Radiomics and deep learning are the two preferred imaging-based strategies for node malignancy prediction. Radiomics models are built based on handcrafted features, a  ...[more]

Similar Datasets

| S-EPMC7178778 | biostudies-literature
| S-EPMC10417354 | biostudies-literature
| S-EPMC10946103 | biostudies-literature
| S-EPMC11304587 | biostudies-literature
| S-EPMC5993124 | biostudies-literature
| S-EPMC10641324 | biostudies-literature
| S-EPMC10821036 | biostudies-literature
| S-EPMC7397819 | biostudies-literature
| S-EPMC8576333 | biostudies-literature
| S-EPMC8606782 | biostudies-literature