Unknown

Dataset Information

0

Characterization of Single Gene Copy Number Variants in Schizophrenia.


ABSTRACT:

Background

Genetic studies of schizophrenia have implicated numerous risk loci including several copy number variants (CNVs) of large effect and hundreds of loci of small effect. In only a few cases has a specific gene been clearly identified. Rare CNVs affecting a single gene offer a potential avenue to discovering schizophrenia risk genes.

Methods

CNVs were generated from exome sequencing of 4913 schizophrenia cases and 6188 control subjects from Sweden. We integrated two CNV calling methods (XHMM and ExomeDepth) to expand our set of single-gene CNVs and leveraged two different approaches for validating these variants (quantitative polymerase chain reaction and NanoString).

Results

We found a significant excess of all rare CNVs (deletions: p = .0004, duplications: p = .0006) and single-gene CNVs (deletions: p = .04, duplications: p = .03) in schizophrenia cases compared with control subjects. An expanded set of CNVs generated from integrating multiple approaches showed a significant burden of deletions in 11 of 21 gene sets previously implicated in schizophrenia and across all genes in those sets (p = .008), although no tests survived correction. We performed an extensive validation of all deletions in the significant set of voltage-gated calcium channels among CNVs called from both exome sequencing and genotyping arrays. In total, 4 exonic, single-gene deletions were validated in schizophrenia cases and none in control subjects (p = .039), of which all were identified by exome sequencing.

Conclusions

These results point to the potential contribution of single-gene CNVs to schizophrenia, indicate that the utility of exome sequencing for CNV calling has yet to be maximized, and note that single-gene CNVs should be included in gene-focused studies using other classes of variation.

SUBMITTER: Szatkiewicz JP 

PROVIDER: S-EPMC7103483 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5285462 | biostudies-literature
| S-EPMC3699619 | biostudies-literature
| S-EPMC2843606 | biostudies-literature
| S-EPMC6973280 | biostudies-literature
| S-EPMC5014093 | biostudies-literature
| S-EPMC2915948 | biostudies-literature
| S-EPMC3718828 | biostudies-literature
| S-EPMC3436704 | biostudies-literature
2010-06-23 | GSE16930 | GEO
| S-EPMC5720705 | biostudies-other