Ontology highlight
ABSTRACT: Purpose
To clarify the role of subretinal drusenoid deposits (SDD; pseudodrusen) in the progression of age-related macular degeneration through high-resolution histology.Methods
In 33 eyes of 32 donors (early age-related macular degeneration, n = 15; geographic atrophy, n = 9; neovascular age-related macular degeneration, n = 7; unremarkable, n = 2), and 2 eyes of 2 donors with in vivo multimodal imaging including optical coherence tomography, examples of SDD contacting photoreceptors were assessed.Results
Subretinal drusenoid deposits were granular extracellular deposits at the apical retinal pigment epithelium (RPE); the smallest were 4-µm wide. Outer segment (OS) fragments and RPE organelles appeared in some larger deposits. A continuum of photoreceptor degeneration included OS disruption, intrusion into inner segments, and disturbance of neurosensory retina. In a transition to outer retinal atrophy, SDD appeared to shrink, OS disappeared, inner segment shortened, and the outer nuclear layer thinned and became gliotic. Stage 1 SDD on optical coherence tomography correlated with displaced OS. Confluent and disintegrating Stage 2 to 3 SDD on optical coherence tomography and dot pseudodrusen by color fundus photography correlated with confluent deposits and ectopic RPE.Conclusion
Subretinal drusenoid deposits may start at the RPE as granular, extracellular deposits. Photoreceptor OS, RPE organelles, and cell bodies may appear in some advanced deposits. A progression to atrophy associated with deposit diminution was confirmed. Findings support a biogenesis hypothesis of outer retinal lipid cycling.
SUBMITTER: Chen L
PROVIDER: S-EPMC7103566 | biostudies-literature |
REPOSITORIES: biostudies-literature