Isolation and Genomic Characterization of a Proteobacterial Methanotroph Requiring Lanthanides.
Ontology highlight
ABSTRACT: Although the bioavailability of rare earth elements (REEs, including scandium, yttrium, and 15 lanthanides) has not yet been examined in detail, methane-oxidizing bacteria (methanotrophs) were recently shown to harbor specific types of methanol dehydrogenases (XoxF-MDHs) that contain lanthanides in their active site, whereas their well-characterized counterparts (MxaF-MDHs) were Ca2+-dependent. However, lanthanide dependency in methanotrophs has not been demonstrated, except in acidic environments in which the solubility of lanthanides is high. We herein report the isolation of a lanthanide-dependent methanotroph from a circumneutral environment in which lanthanides only slightly dissolved. Methanotrophs were enriched and isolated from pond sediment using mineral medium supplemented with CaCl2 or REE chlorides. A methanotroph isolated from the cerium (Ce) chloride-supplemented culture, Methylosinus sp. strain Ce-a6, was clearly dependent on lanthanide. Strain Ce-a6 only required approximately 30 nM lanthanide chloride for its optimal growth and exhibited the ability to utilize insoluble lanthanide oxides, which may enable survival in circumneutral environments. Genome and gene expression analyses revealed that strain Ce-a6 lost the ability to produce functional MxaF-MDH, and this may have been due to a large-scale deletion around the mxa gene cluster. The present results provide evidence for lanthanide dependency as a novel survival strategy by methanotrophs in circumneutral environments.
SUBMITTER: Kato S
PROVIDER: S-EPMC7104280 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA