Project description:RationaleMutations in genes encoding proteins important in the function and metabolism of pulmonary surfactant are recognized causes of lung disease. Clinical genetic testing is available for these disorders, but children with phenotypes consistent with surfactant dysfunction and no identifiable mutations in the known causative genes have been reported.ObjectivesTo identify the mechanism(s) for lung disease in two children with the phenotype of surfactant dysfunction who had negative testing in clinical laboratories for gene mutations causing surfactant dysfunction.MethodsAmplicons spanning multiple exons of candidate genes were generated by polymerase chain reaction and sequenced.Measurements and main resultsA 4,335-base deletion that included all of exon 12 of the gene encoding member A3 of the adenosine triphosphate-binding cassette transporter was identified in a full-term infant with respiratory failure. A 333-base deletion involving part of exon 4 and the adjacent intron of the gene encoding surfactant protein C was identified in a child with interstitial lung disease.ConclusionsLarge deletions are a cause of surfactant dysfunction disorders and may need to be sought for specifically in children whose phenotypes suggest these syndromes but in whom clinical genetic testing is unrevealing.
Project description:NOD-like receptor protein 3 (NLRP3) inflammasome is closely related to silica particle‑induced chronic lung inflammation but its role in epithelial remodeling, repair and regeneration in the distal lung during development of silicosis remains to be elucidated. The present study aimed to determine the effects of the NLRP3 inflammasome on epithelial remodeling and cellular regeneration and potential mechanisms in the distal lung of silica‑treated mice at three time points. Pulmonary function assessment, inflammatory cell counting, enzyme‑linked immunosorbent assay, histological and immunological analyses, hydroxyproline assay and western blotting were used in the study. Single intratracheal instillation of a silica suspension caused sustained NLRP3 inflammasome activation in the distal lung. Moreover, a time‑dependent increase in airway resistance and a decrease in lung compliance accompanied progression of pulmonary fibrosis. In the terminal bronchiole, lung remodeling including pyroptosis (membrane‑distributed GSDMD+), excessive proliferation (Ki67+), mucus overproduction (mucin 5 subtype AC and B) and epithelial‑mesenchymal transition (decreased E‑Cadherin+ and increased Vimentin+), was observed by immunofluorescence analysis. Notably, aberrant spatiotemporal expression of the embryonic lung stem/progenitor cell markers SOX2 and SOX9 and ectopic distribution of bronchioalveolar stem cells were observed in the distal lung only on the 7th day after silica instillation (the early inflammatory phase of silicosis). Western blotting revealed that the Sonic hedgehog/Glioma‑associated oncogene (Shh/Gli) and Wnt/β‑catenin pathways were involved in NLRP3 inflammasome activation‑mediated epithelial remodeling and dysregulated regeneration during the inflammatory and fibrotic phases. Overall, sustained NLRP3 inflammasome activation led to epithelial remodeling in the distal lung of mice. Moreover, understanding the spatiotemporal profile of dysregulated epithelial repair and regeneration may provide a novel therapeutic strategy for inhalable particle‑related chronic inflammatory and fibrotic lung disease.
Project description:BackgroundInterstitial lung disease (ILD) is a broad heterogeneous group of lung disorders that is characterized by inflammation of the lungs. Surfactant dysfunction disorders are a rare form of ILD diseases that result from mutations in surfactant protein C gene (SFTPC) with prevalence of approximately 1/1.7 million births. SFTPC patients are presented with clinical manifestations of ILD ranging from fatal respiratory failure of newborn to chronic respiratory problems in children. In the current study, we aimed to investigate the spectrum of SFTPC genetic variants as well as the correlation of the SFTPC gene mutations with ILD disease in twenty unrelated Egyptian children with diffuse lung disease and suspected surfactant dysfunction using Sanger sequencing.ResultsSequencing of SFTPC gene revealed five variants: c.42+35G>A (IVS1+35G>A) (rs8192340) and c.43-21T>C (IVS1-21T>C) (rs13248346) in intron 1, c.436-8C>G (IVS4-8C>G) (rs2070687) in intron 4, c.413C>A p.T138N (rs4715) in exon 4, and c.557G>Ap.S186N (rs1124) in exon 5.ConclusionThe present study confirms the association of detecting variants of SFTPC with surfactant dysfunction disorders.
Project description:Sepsis results in a profound state of immunosuppression, which is temporally associated with impaired leukocyte function. The mechanism of leukocyte reprogramming in sepsis is incompletely understood. In this study, we explored mechanisms contributing to dysregulated inflammatory cytokine expression by pulmonary macrophages during experimental sepsis. Pulmonary macrophages (PM) recovered from the lungs of mice undergoing cecal ligation and puncture (CLP) display transiently reduced expression of some, but not all innate genes in response to LPS. Impaired expression of TNF-alpha and iNOS was associated with reduced acetylation and methylation of specific histones (AcH4 and H3K4me3) and reduced binding of RNA polymerase II to the promoters of these genes. Transient impairment in LPS-induced cytokine responses in septic PM temporally correlated with induction of IRAK-M mRNA and protein, which occurred in a MyD88-dependent fashion. PM isolated from IRAK-M(-/-) mice were largely refractory to CLP-induced impairment in cytokine expression, chromatin remodeling, recruitment of RNA polymerase II, and induction of histone deacetylase-2 observed during sepsis. Our findings indicate that systemic sepsis induces epigenetic silencing of cytokine gene expression in lung macrophages, and IRAK-M appears to be a critical mediator of this response.
Project description:Alveolar type 2 (AT2) cell endoplasmic reticulum (ER) stress is a prominent feature in adult and pediatric interstitial lung disease (ILD and ChILD), but in vivo models linking AT2 cell ER stress to ILD have been elusive. Based on a clinical ChILD case, we identified a critical cysteine residue in the surfactant protein C gene (SFTPC) BRICHOS domain whose mutation induced ER stress in vitro. To model this in vivo, we generated a knockin mouse model expressing a cysteine-to-glycine substitution at codon 121 (C121G) in the Sftpc gene. SftpcC121G expression during fetal development resulted in a toxic gain-of-function causing fatal postnatal respiratory failure from disrupted lung morphogenesis. Induced SftpcC121G expression in adult mice resulted in an ER-retained pro-protein causing AT2 cell ER stress. SftpcC121G AT2 cells were a source of cytokines expressed in concert with development of polycellular alveolitis. These cytokines were subsequently found in a high-dimensional proteomic screen of bronchoalveolar lavage fluid from ChILD patients with the same class of SFTPC mutations. Following alveolitis resolution, SftpcC121G mice developed spontaneous pulmonary fibrosis and restrictive lung impairment. This model provides proof of concept linking AT2 cell ER stress to fibrotic lung disease coupled with translationally relevant biomarkers.
Project description:Epithelial cell dysfunction is postulated as an important component in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Mutations in the surfactant protein C (SP-C) gene (SFTPC), an alveolar type II (AT2) cell-restricted protein, have been found in sporadic and familial IPF. To causally link these events, we developed a knockin mouse model capable of regulated expression of an IPF-associated isoleucine-to-threonine substitution at codon 73 (I73T) in Sftpc (SP-CI73T). Tamoxifen-treated SP-CI73T cohorts developed rapid increases in SftpcI73T mRNA and misprocessed proSP-CI73T protein accompanied by increased early mortality (days 7-14). This acute phase was marked by diffuse parenchymal lung injury, tissue infiltration by monocytes, polycellular alveolitis, and elevations in bronchoalveolar lavage and AT2 mRNA content of select inflammatory cytokines. Resolution of alveolitis (2-4 weeks), commensurate with a rise in TGF-β1, was followed by aberrant remodeling marked by collagen deposition, AT2 cell hyperplasia, α-smooth muscle actin-positive (α-SMA-positive) cells, and restrictive lung physiology. The translational relevance of the model was supported by detection of multiple IPF biomarkers previously reported in human cohorts. These data provide proof of principle that mutant SP-C expression in vivo causes spontaneous lung fibrosis, strengthening the role of AT2 cell dysfunction as a key upstream driver of IPF pathogenesis.
Project description:Alveolar macrophages orchestrate the response to viral infections. Age-related changes in these cells may underlie the differential severity of pneumonia in older patients. We performed an integrated analysis of single-cell RNA-Seq data that revealed homogenous age-related changes in the alveolar macrophage transcriptome in humans and mice. Using genetic lineage tracing with sequential injury, heterochronic adoptive transfer, and parabiosis, we found that the lung microenvironment drove an age-related resistance of alveolar macrophages to proliferation that persisted during influenza A viral infection. Ligand-receptor pair analysis localized these changes to the extracellular matrix, where hyaluronan was increased in aged animals and altered the proliferative response of bone marrow-derived macrophages to granulocyte macrophage colony-stimulating factor (GM-CSF). Our findings suggest that strategies targeting the aging lung microenvironment will be necessary to restore alveolar macrophage function in aging.
Project description:UnlabelledHIF-1? is a transcription factor that is activated during hypoxia and inflammation and is a key regulator of angiogenesis in vivo. During the development of asthma, peribronchial angiogenesis is induced in response to aeroallergens and is thought to be an important feature of sustained chronic allergic inflammation. Recently, elevated HIF-1? levels have been demonstrated in both the lung tissue and bronchoalveolar lavage of allergic patients, respectively. Therefore, we investigated the role of HIF-1? on the development of angiogenesis and inflammation following acute and chronic allergen exposure. Our data shows that intranasal exposure to house dust mite (HDM) increases the expression of HIF-1? in the lung, whilst reducing the expression of the HIF-1? negative regulators, PHD1 and PHD3. Blockade of HIF-1? in vivo, significantly decreased allergic inflammation and eosinophilia induced by allergen, due to a reduction in the levels of IL-5 and Eotaxin-2. Importantly, HIF-1? blockade significantly decreased levels of VEGF-A and CXCL1 in the lungs, which in turn led to a profound decrease in the recruitment of endothelial progenitor cells and a reduction of peribronchial angiogenesis. Furthermore, HDM or IL-4 treatment of primary lung macrophages resulted in significant production of both VEGF-A and CXCL1; inhibition of HIF-1? activity abrogated the production of these factors via an up-regulation of PHD1 and PHD3. These findings suggest that novel strategies to reduce the expression and activation of HIF-1? in lung macrophages may be used to attenuate allergen-induced airway inflammation and angiogenesis through the modulation of VEGF-A and CXCL1 expression.Clinical relevanceThis study provides new insights into the role of HIF-1? in the development of peribronchial angiogenesis and inflammation in a murine model of allergic airway disease. These findings indicate that strategies to reduce activation of macrophage derived HIF-1? may be used as a target to improve asthma pathology.
Project description:Pulmonary disease increases the risk of developing abdominal aortic aneurysms (AAA). However, the mechanism underlying the pathological dialogue between the lungs and aorta is undefined. Here, we find that inflicting acute lung injury (ALI) to mice doubles their incidence of AAA and accelerates macrophage-driven proteolytic damage of the aortic wall. ALI-induced HMGB1 leaks and is captured by arterial macrophages thereby altering their mitochondrial metabolism through RIPK3. RIPK3 promotes mitochondrial fission leading to elevated oxidative stress via DRP1. This triggers MMP12 to lyse arterial matrix, thereby stimulating AAA. Administration of recombinant HMGB1 to WT, but not Ripk3-/- mice, recapitulates ALI-induced proteolytic collapse of arterial architecture. Deletion of RIPK3 in myeloid cells, DRP1 or MMP12 suppression in ALI-inflicted mice repress arterial stress and brake MMP12 release by transmural macrophages thereby maintaining a strengthened arterial framework refractory to AAA. Our results establish an inter-organ circuitry that alerts arterial macrophages to regulate vascular remodeling.
Project description:Renal aging is characterized by functional and structural changes like decreased glomerular filtration rate, and glomerular, tubular and interstitial damage. To gain insight in pathways involved in renal aging, we studied aged mouse strains and used genetic analysis to identify genes associated with aging phenotypes.Upon morphological screening in kidneys from 20-month-old mice from 26 inbred strains we noted intracapillary PAS-positive deposits. The severity of these deposits was quantified by scoring of a total of 50 glomeruli per section (grade 0-4). Electron microscopy and immunohistochemical staining for apoE, apoB, apoA-IV and perilipin-2 was performed to further characterize the lesions. To identify loci associated with these PAS-positive intracapillary glomerular deposits, we performed haplotype association mapping.Six out of 26 mouse strains showed glomerular PAS-positive deposits. The severity of these deposits varied: NOD(0.97), NZW(0.41), NON(0.30), B10(0.21), C3 H(0.9) and C57BR(0.7). The intracapillary deposits were strongly positive for apoE and weakly positive for apoB and apoA-IV. Haplotype association mapping showed a strong association with a 30-Kb haplotype block on Chr 1 within the Esrrg gene. We investigated 1 Mb on each site of this region, which includes the genes Spata17, Gpatch2, Esrrg, Ush2a and Kctd3.By analyzing 26 aged mouse strains we found that some strains developed an intracapillary PAS and apoE-positive lesion and identified a small haplotype block on Chr 1 within the Esrrg gene to be associated with these lipoprotein deposits. The region spanning this haplotype block contains the genes Spata17, Gpatch2, Esrrg, Ush2a and Kctd3, which are all highly expressed in the kidney. Esrrg might be involved in the evolvement of these glomerular deposits by influencing lipid metabolism and possibly immune reponses.