Project description:HIV entry involves binding of the trimeric viral envelope glycoprotein (Env) gp120/gp41 to cell surface receptors, which triggers conformational changes in Env that drive the membrane fusion reaction. The conformational landscape that the lipids and Env navigate en route to fusion has been examined by biophysical measurements on the microscale, whereas electron tomography, x-rays, and NMR have provided insights into the process on the nanoscale and atomic scale. However, the coupling between the lipid and protein pathways that give rise to fusion has not been resolved. Here, we discuss the known and unknown about the overall HIV Env-mediated fusion process.
Project description:Naturally occurring genetic variability across HIV-1 subtypes causes amino acid polymorphisms in encoded HIV-1 proteins including the envelope glycoproteins associated with viral entry. The effects of amino acid polymorphisms on the mechanism of HIV-1 entry into cells, a process initiated by the binding of the viral envelope glycoprotein gp120 to the cellular CD4 receptor, are largely unknown. In this study, we demonstrate that amino acid polymorphisms affect the structural stability and domain cooperativity of gp120 and that those differences are reflected in the binding mechanism of the viral envelope glycoprotein to the cell surface receptor and coreceptor. Moreover, subtype differences also affect the binding behavior of experimental HIV cell entry inhibitors. While gp120-A has a slightly lower denaturation temperature than gp120-B, the most notable stability difference is that for gp120-B the van't Hoff to calorimetric enthalpy ratio (DeltaH(vH)/DeltaH) is 0.95 whereas for gp120-A is 0.6, indicative of more cooperative domain/domain interactions in gp120-B, as this protein more closely approaches a two-state transition. Isothermal titration calorimetry demonstrates that CD4 and 17b (a surrogate antibody for the chemokine coreceptor) exhibit 7- and 3-fold weaker binding affinities for gp120-A. The binding of these proteins as well as that of the experimental entry inhibitor NBD-556 induces smaller conformational changes in gp120-A as evidenced by significantly smaller binding enthalpies and binding entropies. Together, these results describe the effects of gp120 polymorphisms on binding to host cell receptors and emphasize that guidelines for developing future entry inhibitors must recognize and deal with genomic differences between HIV strains.
Project description:Binding to the primary receptor, CD4, triggers conformational changes in the metastable HIV-1 envelope glycoprotein (Env) trimer ((gp120-gp41)3) that are important for virus entry into host cells. These changes include an 'opening' of the trimer, creation of a binding site for the CCR5 co-receptor and formation and/or exposure of a gp41 coiled coil. Here we identify a new compound, 18A (1), that specifically inhibits the entry of a wide range of HIV-1 isolates. 18A does not interfere with CD4 or CCR5 binding, but it inhibits the CD4-induced disruption of quaternary structures at the trimer apex and the exposure of the gp41 HR1 coiled coil. Analysis of HIV-1 variants with increased or reduced sensitivity to 18A suggests that the inhibitor can distinguish distinct conformational states of gp120 in the unliganded Env trimer. The broad-range activity and observed hypersensitivity of resistant mutants to antibody neutralization support further investigation of 18A.
Project description:Structure determination of the HIV-1 envelope glycoprotein (Env) presented a number of challenges, but several high-resolution structures have now become available. In 2013, cryo-EM and x-ray structures of soluble, cleaved SOSIP Env trimers from the clade A BG505 strain provided the first glimpses into the Env trimer fold as well as more the variable regions. A recent cryo-EM structure of a native full-length trimer without any stabilizing mutations had the same core structure, but revealed new insights and features. A more comprehensive and higher resolution understanding of the glycan shield has also emerged, enabling a more complete representation of the Env glycoprotein structure. Complexes of Env trimers with broadly neutralizing antibodies have surprisingly illustrated that most of the Env surface can be targeted in natural infection and that the neutralizing epitopes are almost all composed of both peptide and glycan components. These structures have also provided further evidence of the inherent plasticity of Env and how antibodies can exploit this flexibility by perturbing or even stabilizing the trimer to facilitate neutralization. These breakthroughs have stimulated further design and stabilization of Env trimers as well as other platforms to generate trimers that now span multiple subtypes. These Env trimers when used as immunogens, have led to the first vaccine-induced neutralizing antibodies for structural and functional analyses.
Project description:The combination of three or more antiviral agents that act on different targets is known as highly active antiretroviral therapy (HAART), which is widely used to control HIV infection. However, because drug resistance and adverse effects occur after long-term administration, an increasing number of HIV/AIDS patients do not tolerate HAART. It is necessary to continue developing novel anti-HIV drugs, particularly HIV entry/fusion inhibitors. Our group previously identified a small-molecule compound, NB-64, with weak anti-HIV activity. Here, we found that N-substituted pyrrole derivative 12m (NSPD-12m), which was derived from NB-64, had strong anti-HIV-1 activity, and NSPD-12m-treated cells showed good viability. The mechanism of action of NSPD-12m might be targeting the gp41 transmembrane subunit of the HIV envelope glycoprotein, thus inhibiting HIV entry. Site-directed mutagenesis confirmed that a positively charged lysine residue (K574) located in the gp41 pocket region is pivotal for the binding of NSPD-12m to gp41. These findings suggest that NSPD-12m can serve as a lead compound to develop novel virus entry inhibitors.
Project description:Background: A better understanding of the parameters influencing vaccine-induced IgG recognition of individual antigenic regions and their variants within the HIV Envelope protein (Env) can help to improve design of preventive HIV vaccines. Methods: Env-specific IgG responses were mapped in samples of the UKHVC003 Standard Group (UK003SG, n = 11 from UK) and TaMoVac01 (TMV01, n = 17 from Tanzania) HIV vaccine trials. Both trials consisted of three immunizations with DNA, followed by two boosts with recombinant Modified Vaccinia Virus Ankara (MVA), either mediating secretion of gp120 (UK003SG) or the presentation of cell membrane bound gp150 envelopes (TMV01) from infected cells, and an additional two boosts with 5 μg of CN54gp140 protein adjuvanted with glucopyranosyl lipid adjuvant (GLA). Env immunogen sequences in UK003SG were solely based on the clade C isolate CN54, whereas in TMV01 these were based on clades A, C, B, and CRF01AE. The peptide microarray included 8 globally representative Env sequences, CN54gp140 and the MVA-encoded Env immunogens from both trials, as well as additional peptide variants for hot spots of immune recognition. Results: After the second MVA boost, UK003SG vaccinees almost exclusively targeted linear, non-glycosylated antigenic regions located in the inter-gp120 interface. In contrast, TMV01 recipients most strongly targeted the V2 region and an immunodominant region in gp41. The V3 region was frequently targeted in both trials, with a higher recognition magnitude for diverse antigenic variants observed in the UK003SG (p < 0.0001). After boosting with CN54gp140/GLA, the overall response magnitude increased with a more comparable recognition pattern of antigenic regions and variants between the two trials. Recognition of most immunodominant regions within gp120 remained significantly stronger in UK003SG, whereas V2-region recognition was not boosted in either group. Conclusions: IgG recognition of linear antigenic Env regions differed between the two trials particularly after the second MVA boost. Structural features of the MVA-encoded immunogens, such as secreted, monomeric gp120 vs. membrane-anchored, functional gp150, and differences in prime-boost immunogen sequence variability most probably contributed to these differences. Prime-boosting with multivalent Env immunogens during TMV01 did not improve variant cross-recognition of immunodominant peptide variants in the V3 region.
Project description:BackgroundPeptides corresponding to N- and C-terminal heptad repeat regions (HR1 and HR2, respectively) of gp41 can inhibit HIV-1 infection in a dominant negative manner by interfering with refolding of the viral HR1 and HR2 to form a six-helix bundle (6HB) that induces fusion between viral and host cell membranes. Previously, we found that HIV-1 acquired the mutations of Glu560 (E560) in HR1 of envelope (Env) to escape peptide inhibitors. The present study aimed to elucidate the critical role of position 560 in the virus entry and potential resistance mechanisms.ResultsThe Glu560Lys/Asp/Gly (E560K/D/G) mutations in HR1 of gp41 that are selected under the pressure of N- and C-peptide inhibitors modified its molecular interactions with HR2 to change 6HB stability and peptide inhibitor binding. E560K mutation increased 6HB thermostability and resulted in resistance to N peptide inhibitors, but E560G or E560D as compensatory mutations destabilized the 6HB to reduce inhibitor binding and resulted in increased resistance to C peptide inhibitor, T20. Significantly, the neutralizing activities of all mutants to soluble CD4 and broadly neutralizing antibodies targeting membrane proximal external region, 2F5 and 4E10 were improved, indicating the mutations of E560 could regulate Env conformations through cross interactions with gp120 or gp41. The molecular modeling analysis of E560K/D/G mutants suggested that position 560 might interact with the residues within two potentially flexible topological layer 1 and layer 2 in the gp120 inner domain to apparently affect the CD4 utilization. The E560K/D/G mutations changed its interactions with Gln650 (Q650) in HR2 to contribute to the resistance of peptide inhibitors.ConclusionsThese findings identify the contributions of mutations of E560K/D/G in the highly conserved gp41 and highlight Env's high degree of plasticity for virus entry and inhibitor design.
Project description:The trimeric envelope glycoprotein of HIV-1, composed of gp120 and gp41 subunits, remains a major target for vaccine development. The structures of the core regions of monomeric gp120 and gp41 have been determined previously by X-ray crystallography. New insights into the structure of trimeric HIV-1 envelope glycoproteins are now coming from cryo-electron tomographic studies of the gp120/gp41 trimer as displayed on intact viruses and from cryo-electron microscopic studies of purified, soluble versions of the ectodomain of the trimer. Here, we review recent developments in these fields as they relate to our understanding of the structure and function of HIV-1 envelope glycoproteins.
Project description:Our overall goal is to understand how viral envelope proteins mediate membrane fusion and pathogenesis. Membrane fusion is a crucial step in the delivery of the viral genome into the cell resulting in infection. On the other hand, fusion activity of viral envelope glycoproteins expressed in infected cells may cause the demise of uninfected bystander cells by apoptosis. Our general approach is to kinetically resolve steps in the pathway of viral envelope glycoprotein-mediated membrane fusion and to uncover physical parameters underlying those steps using a variety of biochemical, biophysical, virological, and molecular and cell biological techniques. Since HIV fusion involves a complex cascade of interactions of the envelope glycoprotein with two receptors, membrane organization plays an important role and interfering with it may modulate entry. To study this phenomenon, we have either examined cell lines with differential expression of sphingolipids (such as GM3), or altered membrane organization by modifying levels of cholesterol, ceramides, or glycosphingolipids. We show that the localized plasma membrane lipid microenvironment (and not the specific membrane lipids) in the vicinity of CD4 controls receptor mobility and HIV-1 fusion. The complex cascade of conformational changes that must occur to allow virus entry is also a very important target for therapy and vaccine development. We have recently designed and tested peptide analogs composed of chemical spacers and reactive moieties positioned strategically to promote permanent attachment. Using a temperature-arrested state in vitro assay we show evidence for the trapping of a pre-six-helix bundle fusion intermediate by a covalent reaction with the inhibitory reactive peptide. Also, using photo-reactive hydrophobic probes we have found ways to inactivate viral envelope glycoproteins while leaving their overall structures intact. Finally, in order to study the envelope glycoprotein effects on pathogenesis, we have used an in vitro model of co-culture of envelope-expressing cells as effectors and CD4+ T cells as targets. We delineated that apoptosis mediated by envelope glycoprotein in bystander cells correlates with transmembrane subunit (gp41)-induced hemifusion. The apoptotic pathway initiated by this interaction involves caspase-3-dependent mitochondrial depolarization and reactive oxygen species production, which depends on the phenotype of the envelope glycoprotein associated with the virus. Taken as a whole, our studies have many different important implications for antiviral therapies and vaccine development.
Project description:BackgroundHepatitis C virus (HCV) is one of the major causes of cirrhosis and hepatocellular carcinoma with an estimation of 185 million people with infection. The E2 is the main target for neutralizing antibody responses and the variation of this region is related to maintenance of persistent infection by emerging escape variants and subsequent development of chronic infection. While both E1 and E2 are hypervariable in nature, it is difficult to design vaccines or therapeutic drugs against them.ObjectivesThe objective of this study was to characterize genotype 5a E1 and E2 sequences to determine possible glycosylation sites, conserved B-cell epitopes and peptides in HCV that could be useful targets in design of vaccine and entry inhibitors.Patients and methodsThis study was conducted through PCR amplification of E1 and E2 regions, sequencing, prediction of B-cell epitopes, analysis of N-linked glycosylation and peptide design in 18 samples of HCV genotype 5a from South African.ResultsDifferences in the probability of glycosylation in E1 and E2 regions were observed in this study. Three conserved antigenic B-cell epitopes were predicted in the E2 regions and also 11 short peptides were designed from the highly conserved residues.ConclusionsThis study provided conserved B-cell epitopes and peptides that can be useful for designing entry inhibitors and vaccines able to cover a global population, especially where genotype 5a is common.