Unknown

Dataset Information

0

ZnO/CuSCN Nano-Heterostructure as a Highly Efficient Field Emitter: a Combined Experimental and Theoretical Investigation.


ABSTRACT: We report the synthesis of two-dimensional porous ZnO nanosheets, CuSCN nanocoins, and ZnO/CuSCN nano-heterostructure thin films grown on fluorine-doped tin oxide substrates via two simple and low-cost solution chemical routes, i.e., chemical bath deposition and successive ionic layer adsorption and reaction methods. Detail characterizations regarding the structural, optoelectronic, and morphological properties have been carried out, which reveal high-quality and crystalline synthesized materials. Field emission (FE) investigations performed at room temperature with a base pressure of 1 × 10-8 mbar demonstrate superior FE performance of the ZnO/CuSCN nano-heterostructure compared to the isolated porous ZnO nanosheets and CuSCN nanocoins. For instance, the turn-on field required to draw a current density of 10 ?A/cm2 is found to be 2.2, 1.1, and 0.7 V/?m for the ZnO, CuSCN, and ZnO/CuSCN nano-heterostructure, respectively. The observed significant improvement in the FE characteristics (ultralow turn-on field of 0.7 V/?m for an emission current density of 10 ?A/cm2 and the achieved high current density of 2.2 mA/cm2 at a relatively low applied electric field of 1.8 V/?m) for the ZnO/CuSCN nano-heterostructure is superior to the isolated porous ZnO nanosheets, CuSCN nanocoins, and other reported semiconducting nano-heterostructures. Complementary first-principles density functional theory calculations predict a lower work function for the ZnO/CuSCN nano-heterostructure (4.58 eV), compared to the isolated ZnO (5.24 eV) and CuSCN (4.91 eV), validating the superior FE characteristics of the ZnO/CuSCN nano-heterostructure. The ZnO/CuSCN nanocomposite could provide a promising class of FE cathodes, flat panel displays, microwave tubes, and electron sources.

SUBMITTER: Baviskar PK 

PROVIDER: S-EPMC7114736 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

ZnO/CuSCN Nano-Heterostructure as a Highly Efficient Field Emitter: a Combined Experimental and Theoretical Investigation.

Baviskar Prashant K PK   Rondiya Sachin R SR   Patil Girish P GP   Sankapal Babasaheb R BR   Pathan Habib M HM   Chavan Padmakar G PG   Dzade Nelson Y NY  

ACS omega 20200320 12


We report the synthesis of two-dimensional porous ZnO nanosheets, CuSCN nanocoins, and ZnO/CuSCN nano-heterostructure thin films grown on fluorine-doped tin oxide substrates via two simple and low-cost solution chemical routes, i.e., chemical bath deposition and successive ionic layer adsorption and reaction methods. Detail characterizations regarding the structural, optoelectronic, and morphological properties have been carried out, which reveal high-quality and crystalline synthesized material  ...[more]

Similar Datasets

| S-EPMC5032023 | biostudies-literature
| S-EPMC4101473 | biostudies-literature
| S-EPMC7343831 | biostudies-literature
| S-EPMC6095927 | biostudies-literature
| S-EPMC9626801 | biostudies-literature
| S-EPMC5610263 | biostudies-other
| S-EPMC3832853 | biostudies-other
| S-EPMC9047063 | biostudies-literature
| S-EPMC7417576 | biostudies-literature
| S-EPMC7670445 | biostudies-literature