Unknown

Dataset Information

0

Broad applicability of a streamlined ethyl cinnamate-based clearing procedure.


ABSTRACT: Turbidity and opaqueness are inherent properties of tissues that limit the capacity to acquire microscopic images through large tissues. Creating a uniform refractive index, known as tissue clearing, overcomes most of these issues. These methods have enabled researchers to image large and complex 3D structures with unprecedented depth and resolution. However, tissue clearing has been adopted to a limited extent due to a combination of cost, time, complexity of existing methods and potential negative impact on fluorescence signal. Here, we describe 2Eci (2nd generation ethyl cinnamate-based clearing), which can be used to clear a wide range of tissues in several species, including human organoids, Drosophila melanogaster, zebrafish, axolotl and Xenopus laevis, in as little as 1-5?days, while preserving a broad range of fluorescent proteins, including GFP, mCherry, Brainbow and Alexa-conjugated fluorophores. Ethyl cinnamate is non-toxic and can easily be used in multi-user microscope facilities. This method opens up tissue clearing to a much broader group of researchers due to its ease of use, the non-toxic nature of ethyl cinnamate and broad applicability.

SUBMITTER: Masselink W 

PROVIDER: S-EPMC7115989 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Broad applicability of a streamlined ethyl cinnamate-based clearing procedure.

Masselink Wouter W   Reumann Daniel D   Murawala Prayag P   Pasierbek Pawel P   Taniguchi Yuka Y   Bonnay François F   Meixner Katharina K   Knoblich Jürgen A JA   Tanaka Elly M EM  

Development (Cambridge, England) 20190201 3


Turbidity and opaqueness are inherent properties of tissues that limit the capacity to acquire microscopic images through large tissues. Creating a uniform refractive index, known as tissue clearing, overcomes most of these issues. These methods have enabled researchers to image large and complex 3D structures with unprecedented depth and resolution. However, tissue clearing has been adopted to a limited extent due to a combination of cost, time, complexity of existing methods and potential nega  ...[more]

Similar Datasets

| S-EPMC6345820 | biostudies-other
| S-EPMC3722280 | biostudies-literature
| S-EPMC5342023 | biostudies-literature
| S-EPMC5660084 | biostudies-literature
| S-EPMC6342919 | biostudies-literature
| S-EPMC8640006 | biostudies-literature
| S-EPMC5877800 | biostudies-literature
| S-EPMC4351720 | biostudies-literature
| S-EPMC2629773 | biostudies-literature
| S-EPMC10518609 | biostudies-literature