Unknown

Dataset Information

0

The Chemistry of Cosmic Dust Analogues from C, C2, and C2H2 in C-Rich Circumstellar Envelopes.


ABSTRACT: Interstellar carbonaceous dust is mainly formed in the innermost regions of circumstellar envelopes around carbon-rich asymptotic giant branch (AGB) stars. In these highly chemically stratified regions, atomic and diatomic carbon, along with acetylene are the most abundant species after H2 and CO. In a previous study, we addressed the chemistry of carbon (C and C2) with H2 showing that acetylene and aliphatic species form efficiently in the dust formation region of carbon-rich AGBs whereas aromatics do not. Still, acetylene is known to be a key ingredient in the formation of linear polyacetylenic chains, benzene and polycyclic aromatic hydrocarbons (PAHs), as shown by previous experiments. However, these experiments have not considered the chemistry of carbon (C and C2) with C2H2. In this work, by employing a sufficient amount of acetylene, we investigate its gas-phase interaction with atomic and diatomic carbon. We show that the chemistry involved produces linear polyacetylenic chains, benzene and other PAHs, which are observed with high abundances in the early evolutionary phase of planetary nebulae. More importantly, we have found a non-negligible amount of pure and hydrogenated carbon clusters as well as aromatics with aliphatic substitutions, both being a direct consequence of the addition of atomic carbon. The incorporation of alkyl substituents into aromatics can be rationalized by a mechanism involving hydrogen abstraction followed by methyl addition. All the species detected in gas phase are incorporated into the nanometric sized dust analogues, which consist of a complex mixture of sp, sp2 and sp3 hydrocarbons with amorphous morphology.

SUBMITTER: Santoro G 

PROVIDER: S-EPMC7116318 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Chemistry of Cosmic Dust Analogues from C, C<sub>2</sub>, and C<sub>2</sub>H<sub>2</sub> in C-Rich Circumstellar Envelopes.

Santoro Gonzalo G   Martínez Lidia L   Lauwaet Koen K   Accolla Mario M   Tajuelo-Castilla Guillermo G   Merino Pablo P   Sobrado Jesús M JM   Peláez Ramón J RJ   Herrero Víctor J VJ   Tanarro Isabel I   Mayoral Á Lvaro ÁL   Agúndez Marcelino M   Sabbah Hassan H   Joblin Christine C   Cernicharo José J   Martín-Gago José Ángel JÁ  

The Astrophysical journal 20200602 2


Interstellar carbonaceous dust is mainly formed in the innermost regions of circumstellar envelopes around carbon-rich asymptotic giant branch (AGB) stars. In these highly chemically stratified regions, atomic and diatomic carbon, along with acetylene are the most abundant species after H<sub>2</sub> and CO. In a previous study, we addressed the chemistry of carbon (C and C<sub>2</sub>) with H<sub>2</sub> showing that acetylene and aliphatic species form efficiently in the dust formation region  ...[more]

Similar Datasets

| S-EPMC7116315 | biostudies-literature
| S-EPMC1567870 | biostudies-literature
| S-EPMC5564497 | biostudies-other
| S-EPMC6957349 | biostudies-literature
| S-EPMC5319002 | biostudies-literature
| S-EPMC11035149 | biostudies-literature
| S-EPMC10191849 | biostudies-literature
| S-EPMC10499605 | biostudies-literature
| S-EPMC6995017 | biostudies-literature
| S-EPMC4950038 | biostudies-literature