Unknown

Dataset Information

0

Rapid Structural, Kinetic, and Immunochemical Analysis of Alpha-Synuclein Oligomers in Solution.


ABSTRACT: Oligomers comprised of misfolded proteins are implicated as neurotoxins in the pathogenesis of protein misfolding conditions such as Parkinson's and Alzheimer's diseases. Structural, biophysical, and biochemical characterization of these nanoscale protein assemblies is key to understanding their pathology and the design of therapeutic interventions, yet it is challenging due to their heterogeneous, transient nature and low relative abundance in complex mixtures. Here, we demonstrate separation of heterogeneous populations of oligomeric ?-synuclein, a protein central to the pathology of Parkinson's disease, in solution using microfluidic free-flow electrophoresis. We characterize nanoscale structural heterogeneity of transient oligomers on a time scale of seconds, at least 2 orders of magnitude faster than conventional techniques. Furthermore, we utilize our platform to analyze oligomer ?-potential and probe the immunochemistry of wild-type ?-synuclein oligomers. Our findings contribute to an improved characterization of ?-synuclein oligomers and demonstrate the application of microchip electrophoresis for the free-solution analysis of biological nanoparticle analytes.

SUBMITTER: Arter WE 

PROVIDER: S-EPMC7116857 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Rapid Structural, Kinetic, and Immunochemical Analysis of Alpha-Synuclein Oligomers in Solution.

Arter William E WE   Xu Catherine K CK   Castellana-Cruz Marta M   Herling Therese W TW   Krainer Georg G   Saar Kadi L KL   Kumita Janet R JR   Dobson Christopher M CM   Knowles Tuomas P J TPJ  

Nano letters 20201020 11


Oligomers comprised of misfolded proteins are implicated as neurotoxins in the pathogenesis of protein misfolding conditions such as Parkinson's and Alzheimer's diseases. Structural, biophysical, and biochemical characterization of these nanoscale protein assemblies is key to understanding their pathology and the design of therapeutic interventions, yet it is challenging due to their heterogeneous, transient nature and low relative abundance in complex mixtures. Here, we demonstrate separation o  ...[more]

Similar Datasets

| S-EPMC5988047 | biostudies-literature
| S-EPMC4830946 | biostudies-literature
| S-EPMC6370846 | biostudies-literature
| S-EPMC10339783 | biostudies-literature
| S-EPMC7822277 | biostudies-literature
| S-EPMC3551866 | biostudies-literature
| S-EPMC11334933 | biostudies-literature
| S-EPMC8199589 | biostudies-literature
| S-EPMC4413268 | biostudies-literature
2024-05-24 | PXD038573 | Pride