Oxygen isotope systematics of chondrule olivine, pyroxene, and plagioclase in one of the most pristine CV3Red chondrites (Northwest Africa 8613).
Ontology highlight
ABSTRACT: We performed in situ oxygen three-isotope measurements of chondrule olivine, pyroxenes, and plagioclase from the newly described CVRed chondrite NWA 8613. Additionally, oxygen isotope ratios of plagioclase in chondrules from the Kaba CV3OxB chondrite were determined to enable comparisons of isotope ratios and degree of alteration of chondrules in both CV lithologies. NWA 8613 was affected by only mild thermal metamorphism. The majority of oxygen isotope ratios of olivine and pyroxenes plot along a slope-1 line in the oxygen three-isotope diagram, except for a type II and a remolten barred olivine chondrule. When isotopic relict olivine is excluded, olivine, low- and high-Ca pyroxenes are indistinguishable regarding ?17O values. Conversely, plagioclase in chondrules from NWA 8613 and Kaba plot along mass-dependent fractionation lines. Oxygen isotopic disequilibrium between phenocrysts and plagioclase was caused probably by exchange of plagioclase with 16O-poor fluids on the CV parent body. Based on an existing oxygen isotope mass balance model, possible dust enrichment and ice enhancement factors were estimated. Type I chondrules from NWA 8613 possibly formed at moderately high dust enrichment factors (50× to 150× CI dust relative to Solar abundances); estimates for water ice in the chondrule precursors range from 0.2 to 0.6× the nominal amount of ice in dust of CI composition. Findings agree with results from an earlier study on oxygen isotopes in chondrules of the Kaba CV chondrite, providing further evidence for a relatively dry and only moderately high dust-enriched disk in the CV chondrule-forming region.
SUBMITTER: Hertwig AT
PROVIDER: S-EPMC7121232 | biostudies-literature | 2019 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA