The 3' Untranslated Region Protects the Heart from Angiotensin II-Induced Cardiac Dysfunction via AGGF1 Expression.
Ontology highlight
ABSTRACT: The messenger RNA (mRNA) 3' untranslated regions (3' UTRs), as cis-regulated elements bound by microRNAs (miRNAs), affect their gene translation. However, the role of the trans-regulation of 3' UTRs during heart dysfunction remains elusive. Compared with administration of angiogenic factor with G-patch and forkhead-associate domains 1 (Aggf1), ectopic expression of Aggf1 with its 3' UTR significantly suppressed cardiac dysfunction in angiotensin II-infused mice, with upregulated expression of both Aggf1 and myeloid cell leukemia 1 (Mcl1). Along their 3' UTRs, Mcl1 and Aggf1 mRNAs share binding sites for the same miRNAs, including miR-105, miR-101, and miR-93. We demonstrated that the protein-coding Mcl1 and Aggf1 mRNAs communicate and co-regulate each other's expression through competition for these three miRNAs that target both transcripts via their 3' UTRs. Our results indicate that Aggf1 3' UTR, as a trans-regulatory element, accelerates the cardioprotective role of Aggf1 in response to hypertensive conditions by elevating Mcl1 expression. Our work broadens the scope of gene therapy targets and provides a new insight into gene therapy strategies involving 3' UTRs.
SUBMITTER: Ding L
PROVIDER: S-EPMC7132794 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA