Project description:Background: Antimicrobial resistance (AMR) / drug resistant infections (DRIs) are a major global health priority. Surveillance data is critical to inform infection treatment guidelines, monitor trends, and to assess interventions. However, most existing AMR / DRI surveillance systems are passive and pathogen-based with many potential biases. Addition of clinical and patient outcome data would provide considerable added value to pathogen-based surveillance. Methods: The aim of the ACORN project is to develop an efficient clinically-oriented AMR surveillance system, implemented alongside routine clinical care in hospitals in low- and middle-income country settings. In an initial pilot phase, clinical and microbiology data will be collected from patients presenting with clinically suspected meningitis, pneumonia, or sepsis. Community-acquired infections will be identified by daily review of new admissions, and hospital-acquired infections will be enrolled during weekly point prevalence surveys, on surveillance wards. Clinical variables will be collected at enrolment, hospital discharge, and at day 28 post-enrolment using an electronic questionnaire on a mobile device. These data will be merged with laboratory data onsite using a flexible automated computer script. Specific target pathogens will be Streptococcus pneumoniae, Staphylococcus aureus, Salmonella spp ., Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii. A bespoke browser-based app will provide sites with fully interactive data visualisation, analysis, and reporting tools. Discussion: ACORN will generate data on the burden of DRI which can be used to inform local treatment guidelines / national policy and serve as indicators to measure the impact of interventions. Following development, testing and iteration of the surveillance tools during an initial six-month pilot phase, a wider rollout is planned.
Project description:Surveillance of antimicrobial resistance (AMR) is essential for clinical decision-making and for public health authorities to monitor patterns in resistance and evaluate the effectiveness of interventions and control measures. Existing AMR surveillance is typically based on reports from hospital laboratories and public health laboratories, comprising reports of pathogen frequencies and resistance frequencies among each species detected. Here we propose an improved framework for AMR surveillance, in which the unit of surveillance is patients with specific conditions, rather than biological samples of a particular type. In this 'case-based' surveillance, denominators as well as numerators will be clearly defined with clinical relevance and more comparable at the local, national and international level. In locations with sufficient resources, individual-based data on patient characteristics and full antibiotic susceptibility profiles would provide high-quality evidence for monitoring resistant pathogens of clinical importance, clinical treatment of infections and public health responses to outbreaks of infections with resistant bacteria.
Project description:Wastewater-based surveillance is increasingly recognized as an important approach to monitoring population-level antimicrobial resistance (AMR). In this exploratory study, we examined the use of metagenomics to evaluate AMR using untreated wastewater samples routinely collected by the Niger national polio surveillance program. Forty-eight stored samples from two seasons each year over 4 years (2016-2019) in three regions were selected for inclusion in this study and processed using unbiased DNA deep sequencing. Normalized number of reads of genetic determinants for different antibiotic classes were compared over time, by season, and by location. Correlations in resistance were examined among classes. Changes in reads per million per year were demonstrated for several classes, including decreases over time in resistance determinants for phenicols (-3.3, 95% CI: -8.7 to -0.1, P = 0.029) and increases over time for aminocoumarins (3.8, 95% CI: 0.0 to 11.4, P = 0.043), fluoroquinolones (6.8, 95% CI: 0.0 to 20.5, P = 0.048), and beta-lactams (0.85, 95% CI: 0.1 to 1.7, P = 0.006). Sulfonamide resistance was higher in the post-rainy season compared with the dry season (5.2-fold change, 95% CI: 3.4 to 7.9, P < 0.001). No differences were detected when comparing other classes by season or by site for any antibiotic class. Positive correlations were identified in genetic determinants of resistance among several antibiotic classes. These results demonstrate the potential utility of leveraging existing wastewater sample collection in this setting for AMR surveillance.
Project description:IntroductionThe rapid spread of COVID-19 worldwide within 2 months demonstrated the vulnerability of the world's population to infectious diseases. In 2015, the Global Antimicrobial Resistance and Use Surveillance System (GLASS) was launched to combat antimicrobial resistance (AMR). However, there has been no comprehensive assessment of the decade-long global battle against AMR based on GLASS data.MethodsSouth Korea established Kor-GLASS (Korean-GLASS) to proactively monitor data quality and enable international collaborations. A unique feature of Kor-GLASS is the quality control center (QCC), which uses network hubs and ensures standardized, high-quality data through interlaboratory proficiency testing (IPT) and external quality assessment (EQA). In addition, the QCC multifaceted endeavors for integrated data quality management.ResultsSince 2020, high-quality AMR data have indicated fluctuating antibiotic resistance rates in South Korea. This trend does not align with the decrease in antibiotic usage seen in humans but coincides with non-human antibiotic sales, indicating a need for greater monitoring of non-human antibiotic resistance. Comprehensive and robust management taking account of the intricate interplay among humans, animals, and the environment is essential. Kor-GLASS has been expanded into a "One Health" multiagency collaborative initiative.DiscussionAlthough a standardized solution is not suitable for all countries, it must align with the local context and international standards. A centralized top-down management structure such as that of the QCC is essential to ensure continuous data quality coordination. Sustained efforts and surveillance systems are crucial for monitoring and managing AMR and safeguarding human health.
Project description:Rapid screening of hospital admissions to detect asymptomatic carriers of resistant bacteria can prevent pathogen outbreaks. However, the resulting isolates rarely have their genome sequenced due to cost constraints and long turn-around times to get and process the data, limiting their usefulness to the practitioner. Here we used real-time, on-device target enrichment ("adaptive") sequencing as a highly multiplexed assay covering 1,147 antimicrobial resistance genes. We compared its utility against standard and metagenomic sequencing, focusing on an isolate of Raoultella ornithinolytica harbouring three carbapenemases (NDM, KPC, VIM). Based on this experimental data, we then modelled the influence of several variables on the enrichment results and predicted the large effect of nucleotide identity (higher is better) and read length (shorter is better). Lastly, we showed how all relevant resistance genes are detected using adaptive sequencing on a miniature ("Flongle") flow cell, motivating its use in a clinical setting to monitor similar cases and their surroundings.
Project description:Hospital performance is often measured using self-reported statistics, such as the incidence of hospital-transmitted micro-organisms or those exhibiting antimicrobial resistance (AMR), encouraging hospitals with high levels to improve their performance. However, hospitals that increase screening efforts will appear to have a higher incidence and perform poorly, undermining comparison between hospitals and disincentivising testing, thus hampering infection control. We propose a surveillance system in which hospitals test patients previously discharged from other hospitals and report observed cases. Using English National Health Service (NHS) Hospital Episode Statistics data, we analysed patient movements across England and assessed the number of hospitals required to participate in such a reporting scheme to deliver robust estimates of incidence. With over 1.2 million admissions to English hospitals previously discharged from other hospitals annually, even when only a fraction of hospitals (41/155) participate (each screening at least 1000 of these admissions), the proposed surveillance system can estimate incidence across all hospitals. By reporting on other hospitals, the reporting of incidence is separated from the task of improving own performance. Therefore the incentives for increasing performance can be aligned to increase (rather than decrease) screening efforts, thus delivering both more comparable figures on the AMR problems across hospitals and improving infection control efforts.
Project description:Global efforts are underway to combat antimicrobial resistance (AMR). A key target in this intervention is surveillance for local and national action. Data on AMR in Ghana are limited, and monitoring of AMR is nonexistent. We sought to generate baseline data on AMR, and to assess the readiness of Ghana in laboratory-based surveillance. Biomedical scientists in laboratories across Ghana with capacity to perform bacteriological culture were selected and trained. In-house standard operating protocols were used to perform microbiological investigations on clinical specimens. Additional microbiological tests and data analyses were performed at a centralized laboratory. Surveillance data were stored and analyzed using WHONET program files. A total of 24 laboratories participated in the training, and 1,598 data sets were included in the final analysis. A majority of the bacterial species were isolated from outpatients (963 isolates; 60.3%). Urine (617 isolates; 38.6%) was the most common clinical specimen cultured, compared to blood (100 isolates; 6.3%). Ten of 18 laboratories performed blood culture. Bacteria isolated included Escherichia coli (27.5%), Pseudomonas spp. (14.0%), Staphylococcus aureus (11.5%), Streptococcus spp. (2.3%), and Salmonella enterica serovar Typhi (0.6%). Most of the isolates were multidrug-resistant, and over 80% of them were extended-spectrum beta-lactamases-producing. Minimum inhibitory concentration levels at 50% and at 90% for ciprofloxacin, ceftriaxone, and amikacin on selected multidrug-resistant bacteria species ranged between 2 µg/mL and >256 µg/mL. A range of clinical bacterial isolates were resistant to important commonly used antimicrobials in the country, necessitating an effective surveillance to continuously monitor AMR in Ghana. With local and international support, Ghana can participate in global AMR surveillance.
Project description:Antimicrobial resistance (AMR) surveillance of mycoplasmas of veterinary importance has been held back for years due to lack of harmonized methods for antimicrobial susceptibility testing (AST) and interpretative criteria, resulting in a crucial shortage of data. To address AMR in ruminant mycoplasmas, we mobilized a long-established clinical surveillance network called "Vigimyc." Here we describe our surveillance strategy and detail the results obtained during a 2-year monitoring period. We also assess how far our system complies with current guidelines on AMR surveillance and how it could serve to build epidemiological cut-off values (ECOFFs), as a first attainable criterion to help harmonize monitoring efforts and move forward to clinical breakpoints. Clinical surveillance through Vigimyc enables continuous collection, identification and preservation of Mycoplasma spp. isolates along with metadata. The most frequent pathogens, i.e., M. bovis and species belonging to M. mycoides group, show stable clinicoepidemiological trends and were included for annual AST. In the absence of interpretative criteria for ruminant mycoplasmas, we compared yearly minimum inhibitory concentration (MIC) results against reference datasets. We also ran a SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis on the overall service provided by our AMR surveillance strategy. Results of the 2018-2019 surveillance campaign were consistent with the reference datasets, with M. bovis isolates showing high MIC values for all antimicrobial classes except fluoroquinolones, and species of the Mycoides group showing predominantly low MIC values. A few new AMR patterns were detected, such as M. bovis with lower spectinomycin MICs. Our reference dataset partially complied with European Committee on Antimicrobial Susceptibility Testing (EUCAST) requirements, and we were able to propose tentative epidemiological cut-off values (TECOFFs) for M. bovis with tilmicosin and spectinomycin and for M. mycoides group with tilmicosin and lincomycin. These TECOFFs were consistent with other published data and the clinical breakpoints of Pasteurellaceae, which are often used as surrogates for mycoplasmas. SWOT analysis highlighted the benefit of pairing clinical and antimicrobial resistance surveillance despite the AST method-related gaps that remain. The international community should now direct efforts toward AST method harmonization and clinical interpretation.
Project description:This paper presents an annotated dataset used in the MOOD Antimicrobial Resistance (AMR) hackathon, hosted in Montpellier, June 2022. The collected data concerns unstructured data from news items, scientific publications and national or international reports, collected from four event-based surveillance (EBS) Systems, i.e. ProMED, PADI-web, HealthMap and MedISys. Data was annotated by relevance for epidemic intelligence (EI) purposes with the help of AMR experts and an annotation guideline. Extracted data were intended to include relevant events on the emergence and spread of AMR such as reports on AMR trends, discovery of new drug-bug resistances, or new AMR genes in human, animal or environmental reservoirs. This dataset can be used to train or evaluate classification approaches to automatically identify written text on AMR events across the different reservoirs and sectors of One Health (i.e. human, animal, food, environmental sources, such as soil and waste water) in unstructured data (e.g. news, tweets) and classify these events by relevance for EI purposes.
Project description:Canada has implemented on-farm antimicrobial resistance (AMR) surveillance systems for food-producing animals under the Canadian Integrated Program for Antimicrobial Resistance (CIPARS); however, dairy cattle have not been included in that program yet. The objective of this manuscript was to describe the development and implementation of the Canadian Dairy Network for Antimicrobial Stewardship and Resistance (CaDNetASR). An Expert Panel (EP) of researchers was created to lead the development of the dairy surveillance system. The EP initiated a draft document outlining the essential elements of the surveillance framework. This document was then circulated to a Steering Committee (SC), which provided recommendations used by the EP to finalize the framework. CaDNetASR has the following components: (1) a herd-level antimicrobial use quantification system; (2) annually administered risk factor questionnaires; and (3) methods for herd-level detection of AMR in three sentinel enteric pathogens (generic Escherichia coli, Campylobacter spp., and Salmonella spp.) recovered from pooled fecal samples collected from calves, heifers, cows, and the manure pit. A total of 144 dairy farms were recruited in five Canadian provinces (British-Columbia, Alberta, Ontario, Québec, and Nova-Scotia), with the help of local herd veterinarians and regional field workers, and in September 2019, the surveillance system was launched. 97.1 and 94.4% of samples were positive for E. coli, 63.8, and 49.1% of samples were positive for Campylobacter spp., and 5.0 and 7.7% of samples were positive for Salmonella spp., in 2019 and 2020, respectively. E. coli was equally distributed among all sample types. However, it was more likely that Campylobacter spp. were recovered from heifer and cow samples. On the other hand, it was more common to isolate Salmonella spp. from the manure pit compared to samples from calves, heifers, or cows. CaDNetASR will continue sampling until 2022 after which time this system will be integrated into CIPARS. CaDNetASR will provide online access to farmers and veterinarians interested in visualizing benchmarking metrics regarding AMU practices and their relationship to AMR and animal health in dairy herds. This will provide an opportunity to enhance antimicrobial stewardship practices on dairy farms in Canada.