Nonparametric Bayes Models of Fiber Curves Connecting Brain Regions.
Ontology highlight
ABSTRACT: In studying structural inter-connections in the human brain, it is common to first estimate fiber bundles connecting different regions relying on diffusion MRI. These fiber bundles act as highways for neural activity. Current statistical methods reduce the rich information into an adjacency matrix, with the elements containing a count of fibers or a mean diffusion feature along the fibers. The goal of this article is to avoid discarding the rich geometric information of fibers, developing flexible models for characterizing the population distribution of fibers between brain regions of interest within and across different individuals. We start by decomposing each fiber into a rotation matrix, shape and translation from a global reference curve. These components are viewed as data lying on a product space composed of different Euclidean spaces and manifolds. To nonparametrically model the distribution within and across individuals, we rely on a hierarchical mixture of product kernels specific to the component spaces. Taking a Bayesian approach to inference, we develop efficient methods for posterior sampling. The approach automatically produces clusters of fibers within and across individuals. Applying the method to Human Connectome Project data, we find interesting relationships between brain fiber geometry and reading ability. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
SUBMITTER: Zhang Z
PROVIDER: S-EPMC7138131 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
ACCESS DATA