Unknown

Dataset Information

0

HDAC6 promotes sepsis development by impairing PHB1-mediated mitochondrial respiratory chain function.


ABSTRACT: OBJECTIVE:This study was aimed at investigating the regulation of mitochondrial function by histone deacetylase 6 (HDAC6) and the role of HDAC6 in the development and progression of sepsis. RESULTS:HDAC6 downregulated PHB1 and subsequently promoted the development of CLP-induced sepsis. Inhibition of HDAC6 significantly attenuated CLP-induced sepsis through inhibition of mitochondrial dysfunction and reduced oxidant production, thus protecting the rats from oxidative injury. CONCLUSIONS:In this sepsis model, HDAC6 inhibits the expression and function of PHB1 and alters the function of the mitochondrial respiratory chain mediated by PHB1, thus enhancing the production of oxidants and increasing oxidative stress and thereby leading to severe oxidative injury in multiple organs. METHODS:The expression of HDAC6 and prohibitin 1 (PHB1) in humans and in a rat model of sepsis was measured by quantitative reverse-transcription PCR and western blotting. Sepsis induction by cecal ligation and puncture (CLP) was confirmed by histological analysis. Concentrations of different sepsis markers were measured by an enzyme-linked immunosorbent assay, and mitochondrial function was assessed via the mitochondrial respiratory control rate.

SUBMITTER: Guo SD 

PROVIDER: S-EPMC7138540 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

HDAC6 promotes sepsis development by impairing PHB1-mediated mitochondrial respiratory chain function.

Guo Shi-Dong SD   Yan Sheng-Tao ST   Li Wen W   Zhou Hong H   Yang Jian-Ping JP   Yao Yao Y   Shen Mei-Jia MJ   Zhang Liu-Wei LW   Zhang Hong-Bo HB   Sun Li-Chao LC  

Aging 20200328 6


<h4>Objective</h4>This study was aimed at investigating the regulation of mitochondrial function by histone deacetylase 6 (HDAC6) and the role of HDAC6 in the development and progression of sepsis.<h4>Results</h4>HDAC6 downregulated PHB1 and subsequently promoted the development of CLP-induced sepsis. Inhibition of HDAC6 significantly attenuated CLP-induced sepsis through inhibition of mitochondrial dysfunction and reduced oxidant production, thus protecting the rats from oxidative injury.<h4>Co  ...[more]

Similar Datasets

| S-EPMC8503590 | biostudies-literature
2019-04-24 | GSE130191 | GEO
| S-EPMC8599473 | biostudies-literature
| S-EPMC4992456 | biostudies-literature
2013-07-01 | E-GEOD-42986 | biostudies-arrayexpress
| S-EPMC5474760 | biostudies-literature
| S-EPMC6548139 | biostudies-literature
2017-09-13 | PXD006054 | Pride
| S-EPMC4945136 | biostudies-literature
| S-EPMC8740061 | biostudies-literature