Unknown

Dataset Information

0

Computational Models Using Multiple Machine Learning Algorithms for Predicting Drug Hepatotoxicity with the DILIrank Dataset.


ABSTRACT: Drug-induced liver injury (DILI) remains one of the challenges in the safety profile of both authorized and candidate drugs, and predicting hepatotoxicity from the chemical structure of a substance remains a task worth pursuing. Such an approach is coherent with the current tendency for replacing non-clinical tests with in vitro or in silico alternatives. In 2016, a group of researchers from the FDA published an improved annotated list of drugs with respect to their DILI risk, constituting "the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans" (DILIrank). This paper is one of the few attempting to predict liver toxicity using the DILIrank dataset. Molecular descriptors were computed with the Dragon 7.0 software, and a variety of feature selection and machine learning algorithms were implemented in the R computing environment. Nested (double) cross-validation was used to externally validate the models selected. A total of 78 models with reasonable performance were selected and stacked through several approaches, including the building of multiple meta-models. The performance of the stacked models was slightly superior to other models published. The models were applied in a virtual screening exercise on over 100,000 compounds from the ZINC database and about 20% of them were predicted to be non-hepatotoxic.

SUBMITTER: Ancuceanu R 

PROVIDER: S-EPMC7139829 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Computational Models Using Multiple Machine Learning Algorithms for Predicting Drug Hepatotoxicity with the DILIrank Dataset.

Ancuceanu Robert R   Hovanet Marilena Viorica MV   Anghel Adriana Iuliana AI   Furtunescu Florentina F   Neagu Monica M   Constantin Carolina C   Dinu Mihaela M  

International journal of molecular sciences 20200319 6


Drug-induced liver injury (DILI) remains one of the challenges in the safety profile of both authorized and candidate drugs, and predicting hepatotoxicity from the chemical structure of a substance remains a task worth pursuing. Such an approach is coherent with the current tendency for replacing non-clinical tests with in vitro or in silico alternatives. In 2016, a group of researchers from the FDA published an improved annotated list of drugs with respect to their DILI risk, constituting "the  ...[more]

Similar Datasets

| S-EPMC7702310 | biostudies-literature
| S-EPMC4610387 | biostudies-literature
| S-EPMC5021884 | biostudies-literature
| S-EPMC10796927 | biostudies-literature
| S-EPMC6853675 | biostudies-literature
| S-EPMC8237624 | biostudies-literature
| S-EPMC8493462 | biostudies-literature
| S-EPMC8413337 | biostudies-literature
| S-EPMC9300726 | biostudies-literature
| S-EPMC10693451 | biostudies-literature