Transposable elements in individual genotypes of Drosophila simulans.
Ontology highlight
ABSTRACT: Transposable elements are abundant, dynamic components of the genome that affect organismal phenotypes and fitness. In Drosophila melanogaster, they have increased in abundance as the species spread out of Africa, and different populations differ in their transposable element content. However, very little is currently known about how transposable elements differ between individual genotypes, and how that relates to the population dynamics of transposable elements overall. The sister species of D. melanogaster, D. simulans, has also recently become cosmopolitan, and panels of inbred genotypes exist from cosmopolitan and African flies. Therefore, we can determine whether the differences in colonizing populations are repeated in D. simulans, what the dynamics of transposable elements are in individual genotypes, and how that compares to wild flies. After estimating copy number in cosmopolitan and African D. simulans, I find that transposable element load is higher in flies from cosmopolitan populations. In addition, transposable element load varies considerably between populations, between genotypes, but not overall between wild and inbred lines. Certain genotypes either contain active transposable elements or are more permissive of transposition and accumulate copies of particular transposable elements. Overall, it is important to quantify genotype-specific transposable element dynamics as well as population averages to understand the dynamics of transposable element accumulation over time.
SUBMITTER: Signor S
PROVIDER: S-EPMC7141027 | biostudies-literature | 2020 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA