A Color Vision Circuit for Non-Image-Forming Vision in the Primate Retina.
Ontology highlight
ABSTRACT: Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) synchronize our biological clocks with the external light/dark cycle [1]. In addition to photoentrainment, they mediate the effects of light experience as a central modulator of mood, learning, and health [2]. This makes a complete account of the circuity responsible for ipRGCs' light responses essential to understanding their diverse roles in our well-being. Considerable progress has been made in understanding ipRGCs' melanopsin-mediated responses in rodents [3-5]. However, in primates, ipRGCs also have a rare blue-OFF response mediated by an unknown short-wavelength-sensitive (S)-cone circuit [6]. Identifying this S-cone circuit is particularly important because ipRGCs mediate many of the wide-ranging effects of short-wavelength light on human biology. These effects are often attributed to melanopsin, but there is evidence for an S-cone contribution as well [7, 8]. Here, we tested the hypothesis that the S-OFF response is mediated by the S-ON pathway through inhibitory input from an undiscovered S-cone amacrine cell. Using serial electron microscopy in the macaque retina, we reconstructed the neurons and synapses of the S-cone connectome, revealing a novel inhibitory interneuron, an amacrine cell, receiving excitatory glutamatergic input exclusively from S-ON bipolar cells. This S-cone amacrine cell makes highly selective inhibitory synapses onto ipRGCs, resulting in a blue-OFF response. Identification of the S-cone amacrine cell provides the missing component of an evolutionarily ancient circuit using spectral information for non-image forming visual functions.
SUBMITTER: Patterson SS
PROVIDER: S-EPMC7141953 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA