Unknown

Dataset Information

0

Self-organized networks: Darwinian evolution of dynein rings, stalks, and stalk heads.


ABSTRACT: Cytoskeletons are self-organized networks based on polymerized proteins: actin, tubulin, and driven by motor proteins, such as myosin, kinesin, and dynein. Their positive Darwinian evolution enables them to approach optimized functionality (self-organized criticality). Dynein has three distinct titled subunits, but how these units connect to function as a molecular motor is mysterious. Dynein binds to tubulin through two coiled coil stalks and a stalk head. The energy used to alter the head binding and propel cargo along tubulin is supplied by ATP at a ring 1,500 amino acids away. Here, we show how many details of this extremely distant interaction are explained by water waves quantified by thermodynamic scaling. Water waves have shaped all proteins throughout positive Darwinian evolution, and many aspects of long-range water-protein interactions are universal (described by self-organized criticality). Dynein water waves resembling tsunami produce nearly optimal energy transport over 1,500 amino acids along dynein's one-dimensional peptide backbone. More specifically, this paper identifies many similarities in the function and evolution of dynein compared to other cytoskeleton proteins such as actin, myosin, and tubulin.

SUBMITTER: Phillips JC 

PROVIDER: S-EPMC7149232 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Self-organized networks: Darwinian evolution of dynein rings, stalks, and stalk heads.

Phillips J C JC  

Proceedings of the National Academy of Sciences of the United States of America 20200323 14


Cytoskeletons are self-organized networks based on polymerized proteins: actin, tubulin, and driven by motor proteins, such as myosin, kinesin, and dynein. Their positive Darwinian evolution enables them to approach optimized functionality (self-organized criticality). Dynein has three distinct titled subunits, but how these units connect to function as a molecular motor is mysterious. Dynein binds to tubulin through two coiled coil stalks and a stalk head. The energy used to alter the head bind  ...[more]

Similar Datasets

| S-EPMC7511406 | biostudies-literature
| S-EPMC2996321 | biostudies-literature
| S-EPMC6824861 | biostudies-other
| S-EPMC8685680 | biostudies-literature
| S-EPMC3547285 | biostudies-literature
| S-EPMC4832202 | biostudies-other
| S-EPMC4527708 | biostudies-literature
| S-EPMC2604933 | biostudies-literature
| S-EPMC5086271 | biostudies-literature
| S-EPMC2288630 | biostudies-literature