Project description:There are several families of cysteine proteinases with different folds - for example the (chymo)trypsin fold family and papain-like fold family - but in both families the hydrolase activity of cysteine proteinases requires a cysteine residue as the catalytic nucleophile. In this work, we have analyzed the topology of the active site regions in 146 three-dimensional structures of proteins belonging to the Papain-like Cysteine Proteinase (PCP) superfamily, which includes papain as a typical representative of this protein superfamily. All analyzed enzymes contain a unique structurally closed conformation - a "PCP-Zone" - which can be divided into two groups, Class A and Class B. Eight structurally conserved amino acids of the PCP-Zone form a common Structural Core. The Structural Core, catalytic nucleophile, catalytic base and residue Xaa - which stabilizes the side-chain conformation of the catalytic base - make up a PCP Structural Catalytic Core (PCP-SCC). The PCP-SCC of Class A and Class B are divided into 5 and 2 types, respectively. Seven variants of the mutual arrangement of the amino-acid side chains of the catalytic triad - nucleophile, base and residue Xaa - within the same fold clearly demonstrate how enzymes with the papain-like fold adapt to the need to perform diverse functions in spite of their limited structural diversity. The roles of both the PCP-Zone of SARS-CoV-2-PLpro described in this study and the NBCZone of SARS-CoV-2-3CLpro presented in our earlier article (Denesyuk AI, Johnson MS, Salo-Ahen OMH, Uversky VN, Denessiouk K. Int J Biol Macromol. 2020;153:399-411) that are in contacts with inhibitors are discussed.
Project description:Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis, an inflammatory disease of the supporting tissues of the teeth. The Arg-specific (RgpA/B) and Lys-specific (Kgp) cysteine proteinases of P. gingivalis are major virulence factors for the bacterium. In this study κ-casein(109-137) was identified in a chymosin digest of casein as an inhibiting peptide of the P. gingivalis proteinases. The peptide was synthesized and shown to inhibit proteolytic activity associated with P. gingivalis whole cells, purified RgpA-Kgp proteinase-adhesin complexes, and purified RgpB proteinase. The peptide κ-casein(109-137) exhibited synergism with Zn(II) against both Arg- and Lys-specific proteinases. The active region for inhibition was identified as κ-casein(117-137) using synthetic peptides. Kinetic studies revealed that κ-casein(109-137) inhibits in an uncompetitive manner. A molecular model based on the uncompetitive action and its synergistic ability with Zn(II) was developed to explain the mechanism of inhibition. Preincubation of P. gingivalis with κ-casein(109-137) significantly reduced lesion development in a murine model of infection.
Project description:The Severe Acute Respiratory Syndrome (SARS) is a serious respiratory illness that has recently been reported in parts of Asia and Canada. In this study, we use molecular dynamics (MD) simulations and docking techniques to screen 29 approved and experimental drugs against the theoretical model of the SARS CoV proteinase as well as the experimental structure of the transmissible gastroenteritis virus (TGEV) proteinase. Our predictions indicate that existing HIV-1 protease inhibitors, L-700,417 for instance, have high binding affinities and may provide good starting points for designing SARS CoV proteinase inhibitors.
Project description:The 3C-like proteinase of severe acute respiratory syndrome coronavirus (SARS) has been proposed to be a key target for structural based drug design against SARS. We have designed and synthesized 34 peptide substrates and determined their hydrolysis activities. The conserved core sequence of the native cleavage site is optimized for high hydrolysis activity. Residues at position P4, P3, and P3' are critical for substrate recognition and binding, and increment of beta-sheet conformation tendency is also helpful. A comparative molecular field analysis (CoMFA) model was constructed. Based on the mutation data and CoMFA model, a multiply mutated octapeptide S24 was designed for higher activity. The experimentally determined hydrolysis activity of S24 is the highest in all designed substrates and is close to that predicted by CoMFA. These results offer helpful information for the research on the mechanism of substrate recognition of coronavirus 3C-like proteinase.
Project description:The enzymatic activity of the SARS coronavirus main proteinase dimer was characterized by a sensitive, quantitative assay. The new, fluorogenic substrate, (Ala-Arg-Leu-Gln-NH)(2)-Rhodamine, contained a severe acute respiratory syndrome coronavirus (SARS CoV) main proteinase consensus cleavage sequence and Rhodamine 110, one of the most detectable compounds known, as the reporter group. The gene for the enzyme was cloned in the absence of purification tags, expressed in Escherichia coli and the enzyme purified. Enzyme activity from the SARS CoV main proteinase dimer could readily be detected at low pM concentrations. The enzyme exhibited a high K(m), and is unusually sensitive to ionic strength and reducing agents.
Project description:The helper-component proteinase (HC-Pro) of potyvirus is involved in polyprotein processing, aphid transmission, and suppression of antiviral RNA silencing. There is no high resolution structure reported for any part of HC-Pro, hindering mechanistic understanding of its multiple functions. We have determined the crystal structure of the cysteine protease domain of HC-Pro from turnip mosaic virus at 2.0 Å resolution. As a protease, HC-Pro only cleaves a Gly-Gly dipeptide at its own C terminus. The structure represents a postcleavage state in which the cleaved C terminus remains tightly bound at the active site cleft to prevent trans activity. The structure adopts a compact α/β-fold, which differs from papain-like cysteine proteases and shows weak similarity to nsP2 protease from Venezuelan equine encephalitis alphavirus. Nevertheless, the catalytic cysteine and histidine residues constitute an active site that is highly similar to these in papain-like and nsP2 proteases. HC-Pro recognizes a consensus sequence YXVGG around the cleavage site between the two glycine residues. The structure delineates the sequence specificity at sites P1-P4. Structural modeling and covariation analysis across the Potyviridae family suggest a tryptophan residue accounting for the glycine specificity at site P1'. Moreover, a surface of the protease domain is conserved in potyvirus but not in other genera of the Potyviridae family, likely due to extra functional constrain. The structure provides insight into the catalysis mechanism, cis-acting mode, cleavage site specificity, and other functions of the HC-Pro protease domain.
Project description:Piroplasmid parasites comprising of Babesia, Theileria, and Cytauxzoon are transmitted by ticks to farm and pet animals and have a significant impact on livestock industries and animal health in tropical and subtropical regions worldwide. In addition, diverse Babesia spp. infect humans as opportunistic hosts. Molecular phylogeny has demonstrated at least six piroplasmid lineages exemplified by B. microti, B. duncani, C. felis, T. equi, Theileria sensu stricto (T. annulata, T. parva, and T. orientalis) and Babesia sensu stricto (B. bovis, B. bigemina, and B. ovis). C1A cysteine-proteinases (C1A-Cp) are papain-like enzymes implicated in pathogenic and vital steps of the parasite life cycle such as nutrition and host cell egress. An expansion of C1A-Cp of T. annulata and T. parva with respect to B. bovis and B. ovis was previously described. In the present work, C1A-Cp paralogs were identified in available genomes of species pertaining to each piroplasmid lineage. Phylogenetic analysis revealed eight C1A-Cp groups. The profile of C1A-Cp paralogs across these groups corroborates and defines the existence of six piroplasmid lineages. C. felis, T. equi and Theileria s.s. each showed characteristic expansions into extensive families of C1A-Cp paralogs in two of the eight groups. Underlying gene duplications have occurred as independent unique evolutionary events that allow distinguishing these three piroplasmid lineages. We hypothesize that C1A-Cp paralog families may be associated with the advent of the schizont stage. Differences in the invertebrate tick host specificity and/or mode of transmission in piroplasmid lineages might also be associated with the observed C1A-Cp paralog profiles.
Project description:Pharmacophore-based virtual screening is an effective, inexpensive and fast approach to discovering useful starting points for drug discovery. In this study, we developed a pharmacophore model for the main proteinase of severe acute respiratory syndrome coronavirus (SARS-CoV). Then we used this pharmacophore model to search NCI 3D database including 250, 251 compounds and identified 30 existing drugs containing the pharmacophore query. Among them are six compounds that already exhibited anti-SARS-CoV activity experimentally. This means that our pharmacophore model can lead to the discovery of potent anti-SARS-CoV inhibitors or promising lead compounds for further SARS-CoV main proteinase inhibitor development.
Project description:In this study, two homology models of the main proteinase (Mpro) from the novel coronavirus associated with severe acute respiratory syndrome (SARS-CoV) were constructed. These models reveal three distinct functional domains, in which an intervening loop connecting domains II and III as well as a catalytic cleft containing the substrate binding subsites S1 and S2 between domains I and II are observed. S2 exhibits structural variations more significantly than S1 during the 200 ps molecular dynamics simulations because it is located at the open mouth of the catalytic cleft and the amino acid residues lining up this subsite are least conserved. In addition, the higher structural variation of S2 makes it flexible enough to accommodate a bulky hydrophobic residue from the substrate.
Project description:BackgroundDespite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS), efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods.ResultsWe retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR), transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway.ConclusionsOur prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.