Project description:The prognosis of advanced oral squamous cell carcinoma (OSCC) patients remains dismal, and a better understanding of the underlying mechanisms is critical for identifying effective targets with therapeutic potential to improve the survival of patients with OSCC. This study aims to clarify the clinical and biological significance of metastasis-associated long non-coding RNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in OSCC. We found that MALAT1 is overexpressed in OSCC tissues compared to normal oral mucosa by real-time PCR. MALAT1 served as a new prognostic factor in OSCC patients. When knockdown by small interfering RNA (siRNA) in OSCC cell lines TSCCA and Tca8113, MALAT1 was shown to be required for maintaining epithelial-mesenchymal transition (EMT) mediated cell migration and invasion. Western blot and immunofluorescence staining showed that MALAT1 knockdown significantly suppressed N-cadherin and Vimentin expression but induced E-cadherin expression in vitro. Meanwhile, both nucleus and cytoplasm levels of β-catenin and NF-κB were attenuated, while elevated MALAT1 level triggered the expression of β-catenin and NF-κB. More importantly, targeting MALAT1 inhibited TSCCA cell-induced xenograft tumor growth in vivo. Therefore, these findings provide mechanistic insight into the role of MALAT1 in regulating OSCC metastasis, suggesting that MALAT1 is an important prognostic factor and therapeutic target for OSCC.
Project description:Hepatocellular carcinoma (HCC) is a highly aggressive, solid malignancy that has a poor prognosis. Long non-coding RNAs (lncRNAs) have been found to be dysregulated in various cancers, including HCC. However, the molecular mechanism involving lncRNAs in HCC remains largely unknown. In this study, lncRNAs differentially expressed between HCC and corresponding non-cancerous tissue were identified by microarray analysis. A specific differentially expressed lncRNA UBE2CP3 (ubiquitin conjugating enzyme E2 C pseudogene 3) was identified. LncRNA UBE2CP3 was frequently up-regulated in HCC samples as assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH) experiments. Clinical data showed that high levels of lncRNA UBE2CP3 were correlated with poor prognosis in HCC patients. Functional studies demonstrated that over-expression of lncRNA UBE2CP3 promoted cell invasion and migration in vitro and in vivo. Mechanistically, enhanced expression of lncRNA UBE2CP3 increased the expression of Snail1 and N-cadherin, but decreased the expression of E-cadherin, thus promoting the process of epithelial to mesenchymal transition (EMT) and finally inducing cell invasion and migration. Furthermore, serum levels of lncRNA UBE2CP3 were increased in HCC patients and decreased after surgery. Our results suggest that lncRNA UBE2CP3 promotes the metastasis of HCC and that serum lncRNA UBE2CP3 may be a new biomarker for the diagnosis of HCC.
Project description:OBJECTIVE:Currently, the function and mechanisms of long non-coding RNAs (lncRNAs) involved in the metastasis of epithelial ovarian cancer (EOC), especially those of the lncRNAs participated in the epithelial-mesenchymal transition (EMT) process, remains largely unknown. Here, we focused on a lncRNA named AOC4P and analysed its role in EOC. MATERIALS AND METHODS:The expression of AOC4P gene was examined with quantitative real-time quantitative PCR (qRT-PCR). The cell migration and invasion were detected by Transwell and scratch assays. The in vivo metastatic activity was evaluated by intraperitoneal metastasis model. The downstream genes were investigated by a tumour EMT real-time polymerase chain reaction (RT-PCR) array, and validated by qRT-PCR and Western blot. RESULTS:The results showed that AOC4P expression levels were decreased in EOC tissues and cell lines, and that the under-expression of AOC4P was positively correlated with FIGO stage and lymph node metastasis. Furthermore, the knockdown of AOC4P expression in poorly metastatic EOC cell lines remarkably facilitated cell migration/invasion while the overexpression of AOC4P in highly metastatic EOC cell lines reduced the metastatic ability of these cells in vitro. Consistently, the anti-metastatic role of AOC4P in vivo was also verified by bioluminescence imaging and tumour dissection. Mechanistically, the anti-metastatic effect of AOC4P in EOC was partially mediated by the EMT process accompanied by the alterations in MMP9 and COL1A2 expression. CONCLUSION:These data highlight that AOC4P plays a critical role in EOC invasion/metastasis and could function as a novel and effective target for the lncRNA-based anti-metastatic clinical management of EOC.
Project description:Epithelial ovarian cancer (EOC) still remains the most lethal gynaecological malignancy in women, despite the recent progress in the management, including surgery and chemotherapy. According to the microarray data of the GSE18520 and GSE54388 datasets, LINC01215 was identified as an upregulated long noncoding RNA (lncRNA) in EOC. Therefore, this study aimed to figure out the involvement of LINC01215 in the progression of EOC. RT-qPCR was conducted to select the EOC cell line with the highest expression of LINC01215. Methylation of RUNX3 was then examined in EOC cells by MS-PCR. Furthermore, the interaction between LINC01215 and methylation-related proteins was revealed according to the results of RIP and RNA pull down assays. Subsequently, the involvement of LINC01215 and RUNX3 in regulating biological behaviors of EOC cells was investigated. Finally, the effects of the ectopic expression of LINC01215 and RUNX3 on the tumor formation and lymph node metastasis (LNM) of EOC cells were assessed in the xenograft tumors of nude mice. Overexpressing LINC01215 contributed to downregulated levels of RUNX3, as demonstrated by the recruitment of methylation-related proteins. Silencing of LINC01215 elevated the expression of RUNX3, thus suppressing cell proliferation, migration, invasion and EMT and decreasing the expressions of MMP-2, MMP-9 and Vimentin, but increased the expression of E-cadherin. The tumor growth and LNM were suppressed by downregulated levels of LINC01215 through inducing the expression of RUNX3. Collectively, the down-regulating LINC01215 could upregulate the expression of RUNX3 by promoting its methylation, thus suppressing EOC cell proliferation, migration and invasion, EMT, tumor growth and LNM.
Project description:Increasing evidence indicates that long non-coding RNAs (lncRNAs) have been associated with cancer development. However, the contributions of lncRNAs to renal cell carcinoma (RCC) remain poorly characterized. Here, we identified a novel lncRNA, termed HEIRCC, which was up-regulated in RCC tissues through lncRNA microarray analysis and subsequent validation in 60 RCC clinical specimens and cell lines. The high expression of HEIRCC is associated closely with the clinical pathology features such as larger tumor size, poor differentiation, lymphatic metastasis. In vitro assays revealed that HEIRCC knockdown could inhibit cell proliferation, trigger late apoptosis, suppress cell migration and invasion. We further demonstrated that depletion of HEIRCC reduce the epithelial to mesenchymal transition (EMT) program by regulating expression levels of EMT-associated markers in RCC cells. Thus, HEIRCC might be act as an important regulator of EMT in RCC progression and might be a novel therapeutic target for the advanced RCC therapy.
Project description:Colorectal cancer (CRC) remains one of the most common cancers worldwide. Increasing evidence indicates that SPRY4 intronic transcript 1 (SPRY4-IT1) regulate cell growth, differentiation, apoptosis, and cancer progression. However, the expression and function of SPRY4-IT1 in the progression of CRC remains largely unknown. Here, we reported that SPRY4-IT1 was upregulated in CRC. Increased SPRY4-IT1 expression in CRC was associated with larger tumor size and higher clinical stage. In vitro experiments revealed that SPRY4-IT1 knockdown significantly inhibited CRC cell proliferation by causing G1 arrest and promoting apoptosis, whereas SPRY4-IT1 overexpression promoted cell proliferation. Further functional assays indicated that SPRY4-IT1 overexpression significantly promoted cell migration and invasion by regulate the epithelial-mesenchymal transition (EMT). Taken together, our study demonstrates that SPRY4-IT1 could act as a functional oncogene in CRC, as well as a potential therapeutic target to inhibit CRC metastasis.
Project description:BackgroundWe have previously developed a unique metastasis-associated signature consisting of six long non-coding RNAs (lncRNAs), including a novel lncRNA, namely LINC02323. In the present study, we aimed to investigate the underlying roles of LINC02323 in the migration, invasion and TGF-β-induced epithelial-mesenchymal transition (EMT) of lung adenocarcinoma (LUAD) cells.MethodsThe distribution of LINC02323 was detected by the nuclear-plasma separation experiment. Cell proliferation was assessd by MTT assay, and cell migration and invation were detected by transwell assays. EMT was detected by RT-qPCR and western blotting. Interaction between miRNA and LINC02323 was predicted by starBase v2.0 and confirmed by the double luciferase reporting system.ResultsLINC02323 was distributed in the cytoplasm and nucleus. The overexpression or deletion of LINC02323 did not affect the proliferation of LUAD cells, while significantly affected the migration and invasion of LUAD cells. TGF-β-induced EMT process was significantly affected by both RNA interference (RNAi) and overexpression of LINC02323. The predicted results showed that there were binding sites between LINC02323 and miR-1343-3p. The expression of LINC02323 was found to be negatively correlated with miR-1343-3p in LUAD by analyzing The Cancer Genome Atlas (TCGA) database. The double luciferase reporting system, RT-qPCR and western blotting experiments confirmed that LINC02323 could bind to miR-1343-3p, which bound to TGF-β receptor 1 (TGFBR1). Inhibition of miR-1343-3p reversed LINC02323 silencing-mediated suppression of migration, invasion and EMT.ConclusionsLINC02323 acts as a competing endogenous RNA (ceRNA), which sponged miR-1343-3p to upregulate the TGFBR1 expression and promote the EMT and metastasis in LUAD.Key pointsSIGNIFICANT FINDINGS OF THE STUDY: LINC02323 promotes epithelial-mesenchymal transition and metastasis via sponging miR-1343-3p in lung adenocarcinoma.What this study addsLINC02323 is a key molecule in the process of invasion and metastasis of LUAD and might be used as a potential target in metastatic cancer.
Project description:Oral squamous cell carcinoma (OSCC) is an oral and maxillofacial malignancy that exhibits high incidence worldwide. In diverse human cancers, the long non-coding RNA (lncRNA) highly up-regulated in liver cancer (HULC) is aberrantly expressed, but how HULC affects OSCC development and progression has remained mostly unknown. We report that HULC was abnormally up-regulated in oral cancer tissues and OSCC cell lines, and that suppression of HULC expression in OSCC cells not only inhibited the proliferation, drug tolerance, migration and invasion of the cancer cells, but also increased their apoptosis rate. Notably, in a mouse xenograft model, HULC depletion reduced tumorigenicity and inhibited the epithelial-to-mesenchymal transition process. Collectively, our findings reveal a crucial role of the lncRNA HULC in regulating oral cancer carcinogenesis and tumour progression, and thus suggest that HULC could serve as a novel therapeutic target for OSCC.
Project description:The triple-negative breast cancer is the most malignant type of breast cancer. Its pathogenesis and prognosis remain poor despite the significant advances in breast cancer diagnosis and therapy. Meanwhile, long noncoding RNAs (LncRNAs) play a pivotal role in the progression of malignant tumors. In this study, we found that LncRNA-ZEB2-AS1 was dramatically up-regulated in our breast cancer specimens and cells (MDA231), especially in metastatic tumor specimens and highly invasive cells, and high lncRNA-ZEB2-AS1 expression is associated with clinicopathologic features and short survival of breast cancer patients. LncRNA-ZEB2-AS1 promotes the proliferation and metastasis of MDA231 cells in SCID mice. Thus, it is regarded as an oncogene in triple-negative breast cancer. It is mainly endo-nuclear and situated near ZEB2, positively regulating ZEB2 expression and activating the epithelial mesenchymal transition via the PI3K/Akt/GSK3β/Zeb2 signaling pathway. Meanwhile, EGF-induced F-actin polymerization in MDA231 cells can be suppressed by reducing lncRNA-ZEB2-AS1 expression. The migration and invasion of triple-negative breast cancer can be altered through cytoskeleton rearrangement. In summary, we demonstrated that lncRNA-ZEB2-AS1 is an important factor affecting the development of triple-negative breast cancer and thus a potential oncogene target.
Project description:BackgroundGlutamine is the most abundant amino acid in the body and plays a vital role in colorectal cancer (CRC) cell metabolism. However, limited studies have investigated the clinical and prognostic significance of preoperative serum glutamine levels in patients with colorectal cancer, and the underlying mechanism has not been explored.MethodsA total of 121 newly diagnosed CRC patients between 2012 and 2016 were enrolled in this study. Serum glutamine levels were detected, and their associations with clinicopathological characteristics, systemic inflammation markers, carcinoembryonic antigen (CEA) and prognosis were analysed. In addition, the effect of glutamine depletion on recurrence and metastasis was examined in SW480 and DLD1 human CRC cell lines, and epithelial-mesenchymal transition (EMT)-related markers were detected to reveal the possible mechanism.ResultsA decreased preoperative serum level of glutamine was associated with a higher T-class and lymph node metastasis (P < 0.05). A higher serum level of glutamine correlated with a lower CEA level (r = - 0.25, P = 0.02). Low glutamine levels were correlated with shorter overall survival (OS) and disease-free survival (DFS). Multivariate Cox regression analysis showed that serum glutamine was an independent prognostic factor for DFS (P = 0.018), and a nomogram predicting the probability of 1-, 3- and 5-year DFS after radical surgery was built. In addition, glutamine deficiency promoted the migration and invasion of CRC cells. E-cadherin, a vital marker of EMT, was decreased, and EMT transcription factors, including zeb1and zeb2, were upregulated in this process.ConclusionsThis study elucidated that preoperative serum glutamine is an independent prognostic biomarker to predict CRC progression and suggested that glutamine deprivation might promote migration and invasion in CRC cells by inducing the EMT process.