Project description:Fluorescent membrane voltage indicators that enable optical imaging of neuronal circuit operations in the living mammalian brain are powerful tools for biology and particularly neuroscience. Classical voltage-sensitive dyes, typically low molecular-weight organic compounds, have been in widespread use for decades but are limited by issues related to optical noise, the lack of generally applicable procedures that enable staining of specific cell populations, and difficulties in performing imaging experiments over days and weeks. Genetically encoded voltage indicators (GEVIs) represent a newer alternative that overcomes several of the limitations inherent to classical voltage-sensitive dyes. We critically review the fundamental concepts of this approach, the variety of available probes and their state of development.
Project description:Fusion of intrinsically disordered and globular proteins is a powerful strategy to create functional nanomaterials. However, the immutable nature of genetic encoding restricts the dynamic adaptability of nanostructures postexpression. To address this, we envisioned using a myristoyl switch, a protein that combines allostery and post-translational modifications─two strategies that modify protein properties without altering their sequence─to regulate intrinsically disordered protein (IDP)-driven nanoassembly. A typical myristoyl switch, allosterically activated by a stimulus, reveals a sequestered lipid for membrane association. We hypothesize that this conditional exposure of lipids can regulate the assembly of fusion proteins, a concept we term "liposwitching". We tested this by fusing recoverin, a calcium-dependent myristoyl switch, with elastin-like polypeptide, a thermoresponsive model IDP. Biophysical analyses confirmed recoverin's myristoyl-switch functionality, while dynamic light scattering and cryo-transmission electron microscopy showed distinct calcium- and lipidation-dependent phase separation and assembly. This study highlights liposwitching as a viable strategy for controlling DP-driven nanoassembly, enabling applications in synthetic biology and cellular engineering.
Project description:Nitrogen physiology is important in tobacco because of its role in generation of leaf yield and accumulation of nitrogen-containing alkaloids and that can react with nitrosating agents in the formation of carcinogenic tobacco specific nitrosamines. Cultivars of the burley tobacco market class are homozygous for deleterious alleles at the duplicate Yb1 and Yb2 loci which have previously been associated with decreased nitrogen use and utilization efficiency,; increased leaf nitrate, total nitrogen, and alkaloid levels,; and reduced yields. How mutant alleles at these two loci affect these traits is not well understood. Recent identification of the Yb1 and Yb2 genes enabled overexpression of the wild-type Yb1 allele in yb1yb1yb2yb2 plants to determine if observed unfavorable effects were due to linkage or pleiotropy, and to determine if overexpression could lead to beneficial modifications in any of these traits in transgenic plants relative to naturally-occurring wild-type genotypes. Yb1 overexpression was found to confer an agronomic benefit to yb1yb1yb2yb2 genotypes but no advantage to wild-type genotypes. RNA-Seq was used to carry out a comparative transcriptome analyses of genetically engineered and wild-type NILs to gain insight on metabolic pathways affecting carbon and nitrogen metabolism that might be altered as the result of genetic variability at the Yb1 and Yb2 loci. Results indicate that complex changes in the transcriptome of tobacco can be manifested by altered expression of Yb1.
Project description:Despite major improvement in treatment of early stage localised prostate cancer, the distinction between indolent tumors and those that will become aggressive, as well as the lack of efficient therapies of advanced prostate cancer, remain major health problems. Genetically engineered mice (GEM) have been extensively used to investigate the molecular and cellular mechanisms underlying prostate tumor initiation and progression, and to evaluate new therapies. Moreover, the recent development of conditional somatic mutagenesis in the mouse prostate offers the possibility to generate new models that more faithfully reproduce the human disease, and thus should contribute to improve diagnosis and treatments. The strengths and weaknesses of various models will be discussed, as well as future opportunities.
Project description:While transgenic Bacillus thuringiensis (Bt) maize provides pest resistance and a reduced application of chemical pesticides, a comprehensive environmental risk assessment is mandatory before its field release. This research determined the concentrations of Bt protein in plant tissue and in arthropods under field conditions in Gongzhuling City, northeastern China, to provide guidance for the selection of indicator species for non-target risk assessment studies. Bt maize expressing Cry1Ab/2Aj and non-transformed near-isoline were grown under identical environmental and agricultural conditions. Cry1Ab/2Aj was detected in plant tissues and arthropods collected from Bt maize plots during pre-flowering, flowering, and post-flowering. The expression of Cry1Ab/2Aj varied across growth stages and maize tissues, as well as in the collected arthropods at the three growth stages. Therefore, representative species should be chosen to cover the whole growing season and to represent different habitats and ecological functions. Dalbulus maidis (Hemiptera: Cicadellidae), Rhopalosiphum padi (Hemiptera: Aphididae), Heteronychus arator (Coleoptera: Scarabaeidae), and Somaticus angulatus (Coleoptera: Tenebrionidae) are suitable non-target herbivores. Propylea japonica (Coleoptera: Coccinellidae), Paederus fuscipes (Coleoptera: Staphylinidae), Chrysoperla nipponensis (Neuroptera: Chrysopidae), and spiders are suggested predators. Apis cerana and Apis mellifera ligustica (both Hymenoptera: Apidae) represent pollinators and Folsomia candida (Collembola: Isotomidae) decomposers.
Project description:Autoluminescent plants engineered to express a bacterial bioluminescence gene cluster in plastids have not been widely adopted because of low light output. We engineered tobacco plants with a fungal bioluminescence system that converts caffeic acid (present in all plants) into luciferin and report self-sustained luminescence that is visible to the naked eye. Our findings could underpin development of a suite of imaging tools for plants.
Project description:Recent decades have seen groundbreaking advances in cancer research. Genetically engineered animal models, mainly in mice, have contributed to a better understanding of the underlying mechanisms involved in cancer. However, mice are not ideal for translating basic research into studies closer to the clinic. There is a need for complementary information provided by non-rodent species. Pigs are well suited for translational biomedical research as they share many similarities with humans such as body and organ size, aspects of anatomy, physiology and pathophysiology and can provide valuable means of developing and testing novel diagnostic and therapeutic procedures. Porcine oncology is a new field, but it is clear that replication of key oncogenic mutation in pigs can usefully mimic several human cancers. This review briefly outlines the technology used to generate genetically modified pigs, provides an overview of existing cancer models, their applications and how the field may develop in the near future.
Project description:Genetically engineered fusion proteins offer potential as multifunctional biomaterials for medical use. Fusion or chimeric proteins can be formed using recombinant DNA technology by combining nucleotide sequences encoding different peptides or proteins that are otherwise not found together in nature. In the present study, three new fusion proteins were designed, cloned and expressed and assessed for function, by combining the consensus sequence of dragline spider silk with three different antimicrobial peptides. The human antimicrobial peptides human neutrophil defensin 2 (HNP-2), human neutrophil defensins 4 (HNP-4) and hepcidin were fused to spider silk through bioengineering. The spider silk domain maintained its self-assembly features, a key aspect of these new polymeric protein biomaterials, allowing the formation of ?-sheets to lock in structures via physical interactions without the need for chemical cross-linking. These new functional silk proteins were assessed for antimicrobial activity against Gram - Escherichia coli and Gram + Staphylococcus aureus and microbicidal activity was demonstrated. Dynamic light scattering was used to assess protein aggregation to clarify the antimicrobial patterns observed. Attenuated-total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and circular dichroism (CD) were used to assess the secondary structure of the new recombinant proteins. In vitro cell studies with a human osteosarcoma cell line (SaOs-2) demonstrated the compatibility of these new proteins with mammalian cells.