Databases to Efficiently Manage Medium Sized, Low Velocity, Multidimensional Data in Tissue Engineering.
Ontology highlight
ABSTRACT: Science relies on increasingly complex data sets for progress, but common data management methods such as spreadsheet programs are inadequate for the growing scale and complexity of this information. While database management systems have the potential to rectify these issues, they are not commonly utilized outside of business and informatics fields. Yet, many research labs already generate "medium sized", low velocity, multi-dimensional data that could greatly benefit from implementing similar systems. In this article, we provide a conceptual overview explaining how databases function and the advantages they provide in tissue engineering applications. Structural fibroblast data from individuals with a lamin A/C mutation was used to illustrate examples within a specific experimental context. Examples include visualizing multidimensional data, linking tables in a relational database structure, mapping a semi-automated data pipeline to convert raw data into structured formats, and explaining the underlying syntax of a query. Outcomes from analyzing the data were used to create plots of various arrangements and significance was demonstrated in cell organization in aligned environments between the positive control of Hutchinson-Gilford progeria, a well-known laminopathy, and all other experimental groups. In comparison to spreadsheets, database methods were enormously time efficient, simple to use once set up, allowed for immediate access of original file locations, and increased data rigor. In response to the National Institutes of Health (NIH) emphasis on experimental rigor, it is likely that many scientific fields will eventually adopt databases as common practice due to their strong capability to effectively organize complex data.
SUBMITTER: Ochs AR
PROVIDER: S-EPMC7156791 | biostudies-literature | 2019 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA