Project description:A prospective study of a dromedary camel herd during the 2013-14 calving season showed Middle East respiratory syndrome coronavirus infection of calves and adults. Virus was isolated from the nose and feces but more frequently from the nose. Preexisting neutralizing antibody did not appear to protect against infection.
Project description:MERS-CoV infection emerged in the Kingdom of Saudi Arabia (KSA) in 2012 and has spread to 26 countries. However, 80% of all cases have occurred in KSA. The largest outbreak outside KSA occurred in South Korea (SK) in 2015. In this report, we describe an epidemiological comparison of the two outbreaks. Data from 1299 cases in KSA (2012-2015) and 186 cases in SK (2015) were collected from publicly available resources, including FluTrackers, the World Health Organization (WHO) outbreak news and the Saudi MOH (MOH). Descriptive analysis, t-tests, Chi-square tests and binary logistic regression were conducted to compare demographic and other characteristics (comorbidity, contact history) of cases by nationality. Epidemic curves of the outbreaks were generated. The mean age of cases was 51 years in KSA and 54 years in SK. Older males (⩾70 years) were more likely to be infected or to die from MERS-CoV infection, and males exhibited increased rates of comorbidity in both countries. The epidemic pattern in KSA was more complex, with animal-to-human, human-to-human, nosocomial and unknown exposure, whereas the outbreak in SK was more clearly nosocomial. Of the 1186 MERS cases in KSA with reported risk factors, 158 (13.3%) cases were hospital associated compared with 175 (94.1%) in SK, and an increased proportion of cases with unknown exposure risk was found in KSA (710, 59.9%). In a globally connected world, travel is a risk factor for emerging infections, and health systems in all countries should implement better triage systems for potential imported cases of MERS-CoV to prevent large epidemics.
Project description:We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species transmission. Camels may act as a direct source of human MERS-CoV infection.
Project description:BACKGROUND:A case control study to better characterize the clinical features, laboratory, and radiological abnormalities associated with MERS-CoV infection in order to help with early identification of this syndrome from other respiratory infections. METHODS:Eighty patients admitted to a hospital in Riyadh, diagnosed with MERS-CoV infection based on RT-PCR were matched on age, sex, and the presence of a co-morbid condition on a basis of 1:2 to other patients admitted with respiratory symptoms and tested negative for MERS-CoV on RT-PCR. RESULTS:None of the reported MERS-CoV presenting symptoms was significantly associated with being infected with MERS-CoV. On the other hand, WBC count was significantly lower in patients with confirmed MERS-CoV infection (median 5.7 vs 9.3, P: 0.0004). Neutrophil count was as well significantly lower in MERS-CoV patients (median 3.7 vs 6.7, P: 0.0001). Both AST, and ALT values were significantly higher in MERS-CoV infected group (AST median 42 vs 36, P: 0.03, and ALT median 33 vs 28, P: 0.003). Overall our MERS-CoV mortality rate was (10%) below the national figure of (40%). CONCLUSIONS:None of the presenting symptoms are specific for MERS-CoV infection. And out of all the investigations WBC, neutrophil counts, AST and ALT values have some predictive utility.
Project description:Diabetes mellitus and hypertension are recognized risk factors for severe clinical outcomes, including death, associated with Middle East respiratory syndrome coronavirus infection. Among 32 virus-infected patients in Saudi Arabia, severity of illness and frequency of death corresponded closely with presence of multiple and more severe underlying conditions.
Project description:The Grunow-Finke assessment tool (GFT) is an accepted scoring system for determining likelihood of an outbreak being unnatural in origin. Considering its high specificity but low sensitivity, a modified Grunow-Finke tool (mGFT) has been developed with improved sensitivity. The mGFT has been validated against some past disease outbreaks, but it has not been applied to ongoing outbreaks. This study is aimed to score the outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia using both the original GFT and mGFT. The publicly available data on human cases of MERS-CoV infections reported in Saudi Arabia (2012-2018) were sourced from the FluTrackers, World Health Organization, Saudi Ministry of Health, and published literature associated with MERS outbreaks investigations. The risk assessment of MERS-CoV in Saudi Arabia was analyzed using the original GFT and mGFT criteria, algorithms, and thresholds. The scoring points for each criterion were determined by three researchers to minimize the subjectivity. The results showed 40 points of total possible 54 points using the original GFT (likelihood: 74%), and 40 points of a total possible 60 points (likelihood: 67%) using the mGFT, both tools indicating a high likelihood that human MERS-CoV in Saudi Arabia is unnatural in origin. The findings simply flag unusual patterns in this outbreak, but do not prove unnatural etiology. Proof of bioattacks can only be obtained by law enforcement and intelligence agencies. This study demonstrated the value and flexibility of the mGFT in assessing and predicting the risk for an ongoing outbreak with simple criteria.
Project description:Saudi Arabia is one of the countries that has been affected by COVID-19. At the beginning of March 2020, it revealed a steadily rising number of laboratory-confirmed cases. By 20th May 2020, 59,854 infected cases had been confirmed, with 329 deaths. To prevent a further outbreak of COVID-19, this article discusses the current understanding of COVID-19 and compares it with the outbreak of Middle East Respiratory Syndrome (MERS) in 2012 in Saudi Arabia. It also discusses the causes, transmission, symptoms, diagnosis, treatments and prevention measures to identify an applicable measure to control COVID-19.
Project description:Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness in humans; the second-largest and most deadly outbreak to date occurred in Saudi Arabia. The dromedary camel is considered a possible host of the virus and also to act as a reservoir, transmitting the virus to humans. Here, we studied evolutionary relationships for 31 complete genomes of betacoronaviruses, including eight newly sequenced MERS-CoV genomes isolated from dromedary camels in Saudi Arabia. Through bioinformatics tools, we also used available sequences and 3D structure of MERS-CoV spike glycoprotein to predict MERS-CoV epitopes and assess antibody binding affinity. Phylogenetic analysis showed the eight new sequences have close relationships with existing strains detected in camels and humans in Arabian Gulf countries. The 2019-nCov strain appears to have higher homology to both bat coronavirus and SARS-CoV than to MERS-CoV strains. The spike protein tree exhibited clustering of MERS-CoV sequences similar to the complete genome tree, except for one sequence from Qatar (KF961222). B cell epitope analysis determined that the MERS-CoV spike protein has 24 total discontinuous regions from which just six epitopes were selected with score values of >80%. Our results suggest that the virus circulates by way of camels crossing the borders of Arabian Gulf countries. This study contributes to finding more effective vaccines in order to provide long-term protection against MERS-CoV and identifying neutralizing antibodies.
Project description:BACKGROUND:Middle East respiratory syndrome coronavirus (MERS-CoV) was primarily detected in 2012 and still causing disease in human and camel. Camel and bats have been identified as a potential source of virus for disease spread to human. Although, significant information related to MERS-CoV disease, spread, infection, epidemiology, clinical features have been published, A little information is available on the sequence diversity of Spike protein gene. The Spike protein gene plays a significant role in virus attachment to host cells. Recently, the information about recombinant MERS-CoV has been published. So, this work was designed to identify the emergence of any another recombinant virus in Jeddah, Saudi Arabia. METHODS:In this study samples were collected from both human and camels and the Spike protein gene was amplified and sequenced. The nucleotide and amino acid sequences of MERS-CoV Spike protein gene were used to analyze the recombination, genetic diversity and phylogenetic relationship with selected sequences from Saudi Arabia. RESULTS:The nucleotide sequence identity ranged from 65.7% to 99.8% among all the samples collected from human and camels from various locations in the Kingdom. The lowest similarity (65.7%) was observed in samples from Madinah and Dammam. The phylogenetic relationship formed different clusters with multiple isolates from various locations. The sample collected from human in Jeddah hospital formed a closed cluster with human samples collected from Buraydah, while camel sample formed a closed cluster with Hufuf isolates. The phylogenetic tree by using Aminoacid sequences formed closed cluster with Dammam, Makkah and Duba isolates. The amino acid sequences variations were observed in 28/35 samples and two unique amino acid sequences variations were observed in all samples analyzed while total 19 nucleotides sequences variations were observed in the Spike protein gene. The minor recombination events were identified in eight different sequences at various hotspots in both human and camel samples using recombination detection programme. CONCLUSION:The generated information from this study is very valuable and it will be used to design and develop therapeutic compounds and vaccine to control the MERS-CoV disease spread in not only in the Kingdom but also globally.