Project description:Over the past decade, several large registries of patients with idiopathic pulmonary fibrosis (IPF) have been established. These registries are collecting a wealth of longitudinal data on thousands of patients with this rare disease. The data collected in these registries will be complementary to data collected in clinical trials because the patient populations studied in registries have a broader spectrum of disease severity and comorbidities and can be followed for a longer period of time. Maintaining the quality and completeness of registry databases presents administrative and resourcing challenges, but it is important to ensuring the robustness of the analyses. Data from patient registries have already helped improve understanding of the clinical characteristics of patients with IPF, the impact that the disease has on their quality of life and survival, and current practices in diagnosis and management. In the future, analyses of biospecimens linked to detailed patient profiles will provide the opportunity to identify biomarkers linked to disease progression, facilitating the development of precision medicine approaches for prognosis and therapy in patients with IPF.
Project description:Patient-reported outcomes (PROs) include questionnaires or surveys that ask patients for their perceptions about things like symptoms they are experiencing or quality of life. For incurable, morbid, life-shortening conditions like idiopathic pulmonary fibrosis (IPF), PROs are particularly germane: They elucidate for clinicians and researchers what it is like for patients to live with such a disease, and they may detect important treatment effects not captured by other metrics (eg, pulmonary physiology). However, a relative paucity of research on PROs in IPF has left significant knowledge gaps in this area and contributed to the timidity investigators have about using PROs as prominent outcomes in IPF drug trials. Additional research on existing instruments is needed to establish or bolster their basic psychometric properties in IPF. When PROs are used as end points in therapeutic trials, analyzing PRO response data can be challenging, but these challenges can be overcome with a transparent, thoughtful, and sophisticated statistical approach. In this article, we discuss some of the basics of PRO assessment, existing knowledge gaps in IPF-related PRO research, and the potential usefulness of using PROs in IPF trials and conclude by offering specific recommendations for an approach to analyzing repeated-measures PRO data from IPF trials.
Project description:Platelets (small, anucleate cell fragments) derive from large precursor cells, megakaryocytes (MKs), that reside in the bone marrow. MKs emerge from hematopoietic stem cells in a complex differentiation process that involves cytoplasmic maturation, including the formation of the demarcation membrane system, and polyploidization. The main function of MKs is the generation of platelets, which predominantly occurs through the release of long, microtubule-rich proplatelets into vessel sinusoids. However, the idea of a 1-dimensional role of MKs as platelet precursors is currently being questioned because of advances in high-resolution microscopy and single-cell omics. On the one hand, recent findings suggest that proplatelet formation from bone marrow-derived MKs is not the only mechanism of platelet production, but that it may also occur through budding of the plasma membrane and in distant organs such as lung or liver. On the other hand, novel evidence suggests that MKs not only maintain physiological platelet levels but further contribute to bone marrow homeostasis through the release of extracellular vesicles or cytokines, such as transforming growth factor β1 or platelet factor 4. The notion of multitasking MKs was reinforced in recent studies by using single-cell RNA sequencing approaches on MKs derived from adult and fetal bone marrow and lungs, leading to the identification of different MK subsets that appeared to exhibit immunomodulatory or secretory roles. In the following article, novel insights into the mechanisms leading to proplatelet formation in vitro and in vivo will be reviewed and the hypothesis of MKs as immunoregulatory cells will be critically discussed.
Project description:Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease which has a major impact on patients' quality of life (QOL). Except for lung transplantation, there is no curative treatment option. Fortunately, two disease-modifying drugs that slow down disease decline were recently approved. Though this is a major step forward, these drugs do not halt or reverse the disease, nor convincingly improve health-related QOL. In daily practice, disease behavior and response to therapy greatly vary among patients. It is assumed that this is related to the multiple biological pathways and complex interactions between genetic, molecular, and environmental factors that are involved in the pathogenesis of IPF. Recently, research in IPF has therefore started to focus on developing targeted therapy through identifying genetic risk factors and biomarkers. In this rapidly evolving field of personalized medicine, patient factors such as lifestyle, comorbidities, preferences, and experiences with medication should not be overlooked. This review describes recent insights and methods on how to integrate patient perspectives into personalized medicine. Furthermore, it provides an overview of the most used patient-reported outcome measures in IPF, to facilitate choices for both researchers and clinicians when incorporating the patient voice in their research and care. To enhance truly personalized treatment in IPF, biology should be combined with patient perspectives.
Project description:Astrocytes are essential for CNS health, regulating homeostasis, metabolism, and synaptic transmission. In addition to these and many other physiological roles, the pathological impact of astrocytes ("reactive astrocytes") in acute trauma and chronic disease like Alzheimer's disease (AD) is well established. Growing evidence supports a fundamental and active role of astrocytes in multiple neurodegenerative diseases. With a growing interest in normal astrocyte biology, and countless studies on changes in astrocyte function in the context of disease, it may be a surprise that no therapies exist incorporating astrocytes as key targets. Here, we examine unintentional effects of current AD therapies on astrocyte function and theorize how astrocytes may be intentionally targeted for more efficacious therapeutic outcomes. Given their integral role in normal neuronal functioning, incorporating astrocytes as key criteria for AD drug development can only lead to more effective therapies for the millions of AD sufferers worldwide. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.